【大数据机器学习毕业设计选题】 基于Python的高校毕业生招聘信息推荐系统的设计与实现

🔥作者:it毕设实战小研🔥
💖简介:java、微信小程序、安卓;定制开发,远程调试 代码讲解,文档指导,ppt制作💖
精彩专栏推荐订阅:在下方专栏👇🏻👇🏻👇🏻👇🏻
Java精彩实战毕设项目案例
小程序精彩项目案例
Python大数据项目案例

​💕💕文末获取源码


本次文章主要是介绍基于Python的高校毕业生招聘信息推荐系统的设计与实现

1、高校毕业生招聘信息可视化分析-前言介绍

1.1背景

随着高等教育的快速发展和毕业生人数的持续增长,就业市场竞争日趋激烈,传统的招聘信息获取方式已无法满足毕业生个性化求职需求。现有的招聘平台普遍存在信息冗余、匹配精度不高、用户体验欠佳等问题,导致毕业生在海量招聘信息中难以快速找到适合的工作岗位,同时企业也面临着招聘效率低下的困扰。基于上述问题,开发一套智能化的高校毕业生招聘信息推荐系统显得尤为重要。

1.2课题功能、技术

该系统采用Python作为核心开发语言,结合Django后端框架与Vue前端框架构建完整的Web应用架构,通过MySQL数据库进行数据存储管理。系统核心采用协同过滤推荐算法,能够根据用户历史行为和偏好特征为毕业生推荐合适的招聘信息;集成BOSS直聘数据爬虫技术,实时获取最新的招聘数据资源;运用Echarts可视化组件构建大屏分析界面,从录取占比、职位分布、地域分析、行业领域等多维度展示就业市场动态。系统具备用户管理、企业招聘管理、交流论坛、就业资讯等完善功能模块,形成了涵盖求职者、企业、管理员三方角色的完整业务流程。

1.3 意义

本研究通过智能推荐算法与数据可视化技术的有机结合,为高校毕业生提供了精准、高效的求职服务平台,有效提升了招聘信息匹配度和用户满意度。系统的实施不仅缓解了毕业生就业压力,降低了求职成本和时间消耗,也为企业人才招聘提供了便利,提高了人岗匹配的准确性和招聘工作的整体效率。该平台具有较强的实用价值和推广意义,能够促进高校就业服务水平的提升,推动就业市场的良性发展,为解决当前就业市场信息不对称、资源配置效率偏低等关键问题提供了创新的技术解决方案,对于完善现代化就业服务体系建设具有重要的理论价值和现实指导意义。

2、高校毕业生招聘信息可视化分析-研究内容

1、招聘数据采集与清洗:系统通过爬虫技术从BOSS直聘平台实时抓取高校毕业生相关招聘数据,涵盖职位名称、薪资待遇、工作地点、学历要求、工作经验、企业信息等关键信息。数据采集后,通过Python进行清洗,去除重复和异常数据,填补缺失值,统一格式,确保数据质量,以便后续推荐算法分析与处理。

2、数据存储与管理:利用MySQL数据库进行招聘信息、用户行为数据、企业信息等多维度数据的存储与管理,通过合理的数据库设计实现高效的数据查询与检索功能。

3、协同过滤推荐算法实现:基于用户历史浏览记录、投递简历行为、职位收藏等数据,构建协同过滤推荐模型,通过分析用户相似度和物品相似度,为毕业生精准推荐符合个人需求的招聘信息,提升岗位匹配度和求职效率。

4、数据可视化分析:前端使用Vue与Echarts实现招聘数据的可视化展示,通过直观的图表呈现录取占比、职位分布、城市热度、行业领域分析、学历要求统计等关键指标,为用户提供全面的就业市场洞察。

5、系统功能开发与集成:后端使用Django框架进行开发,负责用户管理、企业管理、招聘信息管理、交流论坛、就业资讯发布等核心功能模块的实现。前端通过Vue框架与后端进行数据交互,构建用户友好的操作界面,确保系统功能完整性与用户体验流畅度。

6、系统测试与优化:完成系统开发后,进行功能测试、性能测试和用户体验测试,验证推荐算法准确性、系统响应速度和数据处理能力,确保各模块稳定运行与高效协同工作。

3、高校毕业生招聘信息可视化分析-开发技术与环境

  • 开发语言:Python
  • 后端框架:Django
  • 大数据:Hadoop+Spark+Hive
  • 前端:Vue
  • 数据库:MySQL
  • 算法:协同过滤模型
  • 开发工具:pycharm

4、高校毕业生招聘信息可视化分析-功能介绍

亮点:(协同过滤推荐算法、爬虫【BOSS直聘】、Echarts可视化)

1、用户功能:登录注册、查看企业招聘、查看交流论坛、查看就业资讯。
2、管理员:用户管理、企业管理、岗位分类管理、企业招聘管理、交流论坛管理、行业领域管理。
3、企业:企业招聘管理、应聘信息管理、录取通知管理。
4、大屏可视化分析:录取占比、职位名称、城市、招聘爬取、行业领域、工作经验、学历、公司名称、。
5、算法:协同过滤算法。

5、高校毕业生招聘信息可视化分析-论文参考

6、高校毕业生招聘信息可视化分析-成果展示

6.1演示视频

【大数据机器学习毕业设计选题】 基于Python的高校毕业生招聘信息推荐系统的设计与实现

6.2演示图片

☀️可视化大屏☀️

在这里插入图片描述

☀️登录注册☀️

在这里插入图片描述

☀️查看交流论坛☀️

在这里插入图片描述

☀️使查看企业招聘☀️

在这里插入图片描述

☀️用户管理☀️
在这里插入图片描述

☀️企业招聘管理☀️

在这里插入图片描述

7、代码展示

1.数据清洗【代码如下(示例):】

class RecruitmentDataCleaner:
    def __init__(self, data_path):
        """
        初始化数据清洗器
        :param data_path: 原始数据文件路径
        """
        self.data_path = data_path
        self.df = None
        
    def load_data(self):
        """加载原始数据"""
        try:
            self.df = pd.read_csv(self.data_path, encoding='utf-8')
            print(f"数据加载成功,共{len(self.df)}条记录")
            return True
        except Exception as e:
            print(f"数据加载失败:{e}")
            return False
    
    def remove_duplicates(self):
        """去除重复数据"""
        before_count = len(self.df)
        # 基于职位名称、企业名称、薪资范围去重
        self.df.drop_duplicates(subset=['job_title', 'company_name', 'salary'], 
                               keep='first', inplace=True)
        after_count = len(self.df)
        print(f"去重完成:删除{before_count - after_count}条重复记录")
    
    def clean_salary_data(self):
        """清洗薪资数据"""
        def extract_salary(salary_str):
            if pd.isna(salary_str) or salary_str == '':
                return np.nan, np.nan
            
            # 匹配薪资范围:如 "8K-15K·13薪" 或 "面议"
            salary_pattern = r'(\d+)[kK]?[-·](\d+)[kK]'
            match = re.search(salary_pattern, str(salary_str))
            
            if match:
                min_salary = int(match.group(1)) * 1000
                max_salary = int(match.group(2)) * 1000
                return min_salary, max_salary
            elif '面议' in str(salary_str):
                return 0, 0
            else:
                return np.nan, np.nan
        
        # 提取薪资范围
        salary_data = self.df['salary'].apply(extract_salary)
        self.df['min_salary'] = [item[0] for item in salary_data]
        self.df['max_salary'] = [item[1] for item in salary_data]
        self.df['avg_salary'] = (self.df['min_salary'] + self.df['max_salary']) / 2
        
        print("薪资数据清洗完成")
    
    def clean_experience_data(self):
        """清洗工作经验数据"""
        def standardize_experience(exp_str):
            if pd.isna(exp_str):
                return '不限'
            
            exp_str = str(exp_str).strip()
            
            # 标准化经验要求
            if '不限' in exp_str or '无经验' in exp_str:
                return '不限'
            elif '1年' in exp_str or '一年' in exp_str:
                return '1年经验'
            elif '2年' in exp_str or '二年' in exp_str:
                return '2年经验'
            elif '3年' in exp_str or '三年' in exp_str:
                return '3年经验'
            elif '5年' in exp_str or '五年' in exp_str:
                return '5年经验'
            elif '应届' in exp_str:
                return '应届毕业生'
            else:
                return '其他'
        
        self.df['experience_clean'] = self.df['experience'].apply(standardize_experience)
        print("工作经验数据清洗完成")
    
    def clean_education_data(self):
        """清洗学历要求数据"""
        def standardize_education(edu_str):
            if pd.isna(edu_str):
                return '不限'
            
            edu_str = str(edu_str).strip()

2.大屏可视化【代码如下(示例):】

def dashboard_view(request):
    """大屏可视化主页面"""
    return render(request, 'dashboard/index.html')

def get_dashboard_data(request):
    """获取大屏展示数据"""
    try:
        # 基础统计数据
        total_jobs = JobInfo.objects.count()
        total_companies = Company.objects.count()
        total_applications = UserApplication.objects.count()
        active_jobs = JobInfo.objects.filter(status='active').count()
        
        # 录取占比数据
        admission_stats = get_admission_statistics()
        
        # 职位分布数据
        job_distribution = get_job_distribution()
        
        # 城市分布数据
        city_distribution = get_city_distribution()
        
        # 薪资分布数据
        salary_distribution = get_salary_distribution()
        
        # 行业领域数据
        industry_distribution = get_industry_distribution()
        
        # 学历要求数据
        education_distribution = get_education_distribution()
        
        # 工作经验数据
        experience_distribution = get_experience_distribution()
        
        # 公司规模数据
        company_size_data = get_company_size_data()
        
        # 热门公司数据
        hot_companies = get_hot_companies()
        
        # 趋势数据
        trend_data = get_trend_data()
        
        response_data = {
            'basic_stats': {
                'total_jobs': total_jobs,
                'total_companies': total_companies,
                'total_applications': total_applications,
                'active_jobs': active_jobs
            },
            'admission_stats': admission_stats,
            'job_distribution': job_distribution,
            'city_distribution': city_distribution,
            'salary_distribution': salary_distribution,
            'industry_distribution': industry_distribution,
            'education_distribution': education_distribution,
            'experience_distribution': experience_distribution,
            'company_size_data': company_size_data,
            'hot_companies': hot_companies,
            'trend_data': trend_data
        }
        
        return JsonResponse(response_data, safe=False)
        
    except Exception as e:
        return JsonResponse({'error': str(e)}, status=500)

def get_admission_statistics():
    """获取录取占比统计"""
    total_applications = UserApplication.objects.count()
    if total_applications == 0:
        return []
    
    admitted = UserApplication.objects.filter(status='admitted').count()
    rejected = UserApplication.objects.filter(status='rejected').count()
    pending = UserApplication.objects.filter(status='pending').count()
    
    return [
        {'name': '已录取', 'value': admitted},
        {'name': '已拒绝', 'value': rejected},
        {'name': '待处理', 'value': pending}
    ]

def get_job_distribution():
    """获取职位分布数据"""
    job_counts = JobInfo.objects.values('job_title').annotate(
        count=Count('id')
    ).order_by('-count')[:15]
    
    return [
        {'name': item['job_title'], 'value': item['count']} 
        for item in job_counts
    ]

8、结语(文末获取源码)

💕💕
Java精彩实战毕设项目案例
小程序精彩项目案例
Python大数据项目案例
💟💟如果大家有任何疑虑,或者对这个系统感兴趣,欢迎点赞收藏、留言交流啦!
💟💟欢迎在下方位置详细交流。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值