- 博客(36)
- 收藏
- 关注
原创 基于YOLO11的电梯电瓶车检测系统:让电梯更安全
随着电动车的普及,电梯安全问题日益突出。本文介绍了一个基于YOLO11的电梯电瓶车检测系统,能够实时识别电梯内的人、自行车和摩托车,为电梯安全管理提供智能化解决方案。
2025-07-28 19:21:23
1087
原创 易求职:打造求职路上的智能伙伴
在当今竞争激烈的就业市场,求职不再是简单的能力展示,而是一场需要精心准备的系统工程。易求职通过AI技术赋能整个求职流程,从简历制作到面试准备,全方位提升求职者的竞争力。无论您是刚刚踏入职场的应届毕业生,还是寻求突破的资深人士,易求职都能为您提供专业、高效的求职支持。立即访问易求职官网,开启您的智能求职之旅,让AI成为您职场路上的得力助手!
2025-07-25 11:56:18
883
原创 手把手教你使用AI面试神器“易求职“
易求职是一款集简历制作和AI面试于一体的求职神器,为求职者提供全流程的求职辅助。从简历优化到面试准备,帮助你在激烈的求职竞争中脱颖而出!在线简历制作系统:30+行业专属模板,AI优化建议AI面试助手:基于真实面试题库,模拟面试场景,实时反馈顶部横幅:显示系统状态和用户信息岗位选择区:选择您要面试的岗位开始面试按钮:点击开始模拟面试统计数据区:显示系统数据和使用情况在这个就业环境日益严峻的时代,求职不只是能力的比拼,更是策略和方法的较量。
2025-07-25 11:23:45
769
原创 AI赋能光伏产业:智能缺陷检测系统实现90%+精准识别
本文介绍了一套基于YOLO11深度学习模型的智能光伏缺陷检测系统。该系统通过4500+张标注图像训练,实现了91.8%的高精度检测,能识别鸟粪污染、清洁表面、裂纹和灰尘覆盖四种典型缺陷(最高精度96.3%)。系统采用端到端架构,支持无人机搭载巡检,检测速度达3.0 FPS,可降低80%人工成本。核心功能包括实时预警、缺陷档案管理和趋势分析,已优化部署流程并提供开源代码。该系统显著提升了光伏电站的运维效率和质量控制水平。
2025-07-25 10:52:46
852
原创 AI赋能制造业:基于YOLO11的电池缺陷检测系统实战分享
本文介绍了一种基于YOLO11算法的智能电池缺陷检测系统,解决了传统人工质检效率低、成本高的问题。系统实现了98.7%的高检测精度,单张图片检测时间小于50ms,可识别白菜花、掉角、裂纹等电池表面缺陷。通过数据增强、多尺度损失函数优化等技术手段,模型在862张电池图像数据集上表现出色,[email protected]达到98.7%。相比人工检测,该系统可降低70%成本,检测速度提升3600倍,已具备工业部署条件,未来可拓展至新能源、汽车制造等领域。
2025-07-22 22:04:06
690
原创 AI赋能医疗诊断:结核杆菌智能检测系统
本文介绍了一种基于深度学习(YOLO11架构)的结核杆菌智能检测系统。该系统通过医疗显微图像自动识别结核杆菌,检测精度达83.4%,单张图片处理仅需0.26秒。项目包含数据预处理、模型训练和测试模块,针对医疗图像特点优化了算法参数。测试显示,系统能准确识别样本中的结核杆菌,最高置信度达0.81。该系统可提升诊断效率、减少主观差异,适用于医疗机构、科研院所和公共卫生领域。未来计划扩展至多病原体检测、3D图像支持和云端部署,具有广阔应用前景。
2025-07-21 12:39:09
796
原创 AI赋能工业4.0:铝片表面缺陷检测系统
本文介绍了一款基于YOLO11深度学习的铝片表面工业缺陷检测系统。该系统具有超高精度(mAP50达98.96%)、智能化程度高、部署便捷和成本效益显著四大优势,能检测针孔、擦伤等四种缺陷,单图检测仅需0.05秒。技术方案采用YOLO11算法,在754张高质量铝片图像(2003个标注)上训练,通过优化学习率、数据增强等参数实现工业级检测。系统支持GPU加速,提供完整训练可视化曲线,显著提升检测效率600倍,降低人工成本95%,为制造业质量管控带来革命性突破。
2025-07-21 11:06:32
1190
原创 AI赋能轮胎安全:基于YOLO11的智能裂纹检测系统
本文介绍了一种基于YOLO11的智能轮胎裂纹检测系统,通过深度学习技术实现高精度、实时的轮胎表面缺陷识别。系统采用YOLO11n-cls架构,在715张训练图片上达到95.6%的验证准确率,测试准确率达100%,单图检测时间仅0.023秒。详细阐述了训练配置、模型架构、数据增强策略及性能指标,并提供了可视化分析。该系统支持轻量化部署,可广泛应用于轮胎质检场景,显著提升检测效率和准确率。
2025-07-18 15:10:39
903
原创 基于YOLOv11的水面垃圾智能检测系统
本文介绍了一个基于YOLOv11深度学习模型的水面垃圾智能检测系统。项目采用338张高质量标注图片,针对瓶子和罐子两类垃圾进行训练,实现了97.09%的mAP50精度和76.42%的mAP50-95精度。系统核心包括数据预处理、模型训练和智能检测三大模块,通过VOC格式转换、YOLO模型配置和优化推理流程,实现了4.0FPS的实时检测能力。实验结果显示,模型在74个epoch训练后达到最佳性能,精确率和召回率均超过93%,能有效识别水面垃圾,为环保监测提供了高效解决方案。
2025-07-17 22:27:52
742
原创 AI赋能农业:基于YOLO11的苹果瑕疵检测系统实战分享
本文介绍了一个基于YOLO11模型的苹果瑕疵检测系统,通过深度学习技术实现自动识别苹果表面瑕疵。系统采用PyTorch框架,使用353张标注图像(训练集275张,验证集78张)进行训练。关键技术包括数据预处理(VOC转YOLO格式)、数据增强策略优化以及轻量级YOLO11n模型训练。实验在RTX 4060 GPU上进行,耗时约5小时完成100轮训练。该系统为农产品质量检测提供了智能化解决方案,比传统人工检测更高效可靠。
2025-07-17 21:39:59
1468
原创 使用YOLOv11实现水果类别检测:从数据到模型训练的全过程
本文介绍了基于YOLOv11n模型的水果新鲜度检测方法。通过计算机视觉技术,实现了对31种水果(包括新鲜和腐烂状态)的自动识别。实验采用公开数据集,使用YOLO格式标注,训练50个epochs后获得mAP50为0.709的模型性能。验证结果显示模型召回率较高(0.715),但在复杂场景下仍有提升空间。未来计划通过数据增强、模型优化和移动端部署来改进系统。该项目为水果质量检测提供了高效的自动化解决方案。
2025-07-16 22:34:52
760
1
原创 AI香烟检测实战:YOLO11模型训练全过程解析
随着公共场所禁烟政策的推进,智能香烟检测系统已成为维护健康环境的重要工具。今天我们将分享一个完整的AI香烟检测项目,使用最新的YOLO11模型训练出一个能够准确检测香烟的对象检测系统。通过这次实战,我们成功训练出了一个高性能的香烟检测AI模型。项目展示了从数据准备、模型训练到结果分析的完整流程,为AI在公共健康领域的应用提供了有价值的参考。项目文件结构│ ├── best.pt # 最佳模型权重│ └── last.pt # 最新模型权重├── results.csv # 详细训练数据。
2025-07-15 00:06:14
891
1
原创 基于YOLO11的垃圾分类AI模型训练实战
通过这次实战,我们成功训练出了一个高性能的垃圾分类AI模型。项目展示了从数据准备、模型训练到结果分析的完整流程,为AI在环保领域的应用提供了有价值的参考。项目文件结构│ ├── best.pt # 最佳模型权重│ └── last.pt # 最新模型权重├── results.csv # 详细训练数据├── results.png # 训练曲线图├── confusion_matrix.png # 混淆矩阵└── args.yaml # 训练参数配置。
2025-07-12 21:09:39
1189
原创 基于YOLO11的疲劳检测系统:从训练到部署的完整实战
这个疲劳检测项目展示了如何将最新的深度学习技术应用到实际安全场景中。通过YOLO11算法的强大检测能力,结合科学的PERCLOS疲劳评估算法,我们构建了一个完整的疲劳检测系统。✅高精度检测:mAP50达98.7%的检测准确率✅实时性能:单帧检测时间<50ms✅科学算法:基于PERCLOS的疲劳判断标准✅完整方案:从数据处理到Web部署的全流程✅工程实用:支持图片检测和实时监控。
2025-07-12 00:57:56
691
原创 YOLO11铝片表面缺陷检测系统,准确率高达99%!
基于YOLO11深度学习模型的铝片表面缺陷检测系统 摘要:本文提出了一种采用YOLO11深度学习模型的铝片表面工业缺陷检测系统。针对铝片生产中常见的划痕、污渍、凹坑等缺陷,该系统在754张图像(2003个标注)的数据集上实现了99%的检测精度。相比传统人工检测,该系统具有检测速度快(<50ms/张)、精度高(98.6%召回率)和一致性强的优势。训练采用NVIDIA GPU加速,200轮后mAP@50达到98.9%,模型参数量仅2.5M,大小约6MB,适合工业现场部署应用。
2025-07-10 17:23:38
934
原创 基于YOLO的足球检测Web应用:从训练到部署的完整实战
这个足球检测项目展示了如何将深度学习技术应用到实际场景中。通过YOLO算法的强大检测能力,结合Flask Web框架,我们构建了一个完整的检测系统。
2025-07-09 15:45:07
820
原创 基于YOLO11的智能垃圾桶满溢检测系统:从训练到部署的完整实战
本项目展示了如何使用现代深度学习技术解决实际的城市管理问题。通过YOLO11的强大检测能力,结合Flask Web框架,我们构建了一个完整的智能垃圾桶管理系统。该系统不仅具有良好的检测精度,还提供了友好的用户界面和丰富的功能特性,可以直接应用于实际的智慧城市建设中。
2025-07-09 00:20:14
1054
原创 基于YOLOv11的车辆检测系统项目教程(Python源码+Flask Web界面+数据集)
数据集本项目数据集包含多种场景下的车辆图片,涵盖了不同类型、角度、光照条件下的车辆。所有图片均经过人工标注,标注内容包括车辆的边界框。Flask 是一个用 Python 编写的轻量级 Web 应用框架,具有简单易用、扩展性强等特点。它非常适合快速开发和部署基于 Web 的人工智能应用。通过 Flask,可以将深度学习模型与前端界面无缝集成,实现模型的在线推理和结果可视化。
2025-07-07 15:28:46
1153
原创 人体坐姿检测系统项目教程(YOLO11+PyTorch+可视化)
数据集本项目数据集包含多种场景下的人体坐姿图片,涵盖了正常坐姿、驼背、侧身、翘腿等多种常见坐姿。所有图片均经过人工标注,标注内容包括不同坐姿类别细节图示例Flask 是一个用 Python 编写的轻量级 Web 应用框架,具有简单易用、扩展性强等特点。它非常适合快速开发和部署基于 Web 的人工智能应用。通过 Flask,可以将深度学习模型与前端界面无缝集成,实现模型的在线推理和结果可视化。
2025-07-06 17:23:34
2449
1
原创 【华为开发者空间 x DeepSeek】玩转表格分析
华为开发者空间,是为全球开发者打造的专属开发者空间,致力于为每位开发者提供一台云主机、一套开发工具和云上存储空间,汇聚昇腾、鸿蒙、鲲鹏、GaussDB、欧拉等华为各项根技术的开发工具资源,并提供配套案例指导开发者 从开发编码到应用调测,基于华为根技术生态高效便捷的知识学习、技术体验、应用创新。随着科技的不断进步,大模型技术在各领域展现出巨大的应用潜力。在表格处理和数据分析方面,借助大模型能够实现更高效、精准的操作。
2025-06-19 00:18:37
835
1
原创 基于YOLOv11的红绿灯检测系统(Python源码+Flask Web界面+数据集)
本项目采用自建红绿灯检测数据集,包含红灯、绿灯两类目标,适用于交通场景下的目标检测任务。数据集已整理为YOLO格式,便于直接训练。Flask 是一个用 Python 编写的轻量级 Web 应用框架,具有简单易用、扩展性强等特点。它非常适合快速开发和部署基于 Web 的人工智能应用。通过 Flask,可以将深度学习模型与前端界面无缝集成,实现模型的在线推理和结果可视化。
2025-06-13 00:44:34
820
原创 基于YOLOv11的吸烟行为检测系统(Python源码+Flask Web界面+数据集)
本项目采集了大量吸烟行为图片,并进行了精细标注。数据集包含单一类别"smoke"(吸烟行为),共采集图片500+张,采用8:1:1比例划分为训练集、验证集、测试集。Flask 是一个用 Python 编写的轻量级 Web 应用框架,具有简单易用、扩展性强等特点。它非常适合快速开发和部署基于 Web 的人工智能应用。通过 Flask,可以将深度学习模型与前端界面无缝集成,实现模型的在线推理和结果可视化。
2025-06-12 21:45:50
616
原创 智能时代的桥梁:提示词工程全解析
通过科学设计和优化提示词,我们不仅能够更精准地引导AI完成各类复杂任务,还能极大提升模型的实用性和可控性。提示词工程是一种优化人机沟通的设计方法,核心在于通过巧妙的文本指令,让AI模型更好地理解并满足人类的需求。随着大语言模型技术的不断进步,提示词工程也在持续升级,为人类带来更自然、高效、可靠的AI交互体验。未来,技术创新与人文关怀的结合,将推动我们迈向更加智能且富有温度的AI应用新生态。例如:有一份包含1000名学生成绩的数据,先计算平均分,再算标准差,最后分析成绩分布的离散程度。
2025-06-08 20:27:08
1018
原创 基于K-Means的微信社交网络数据分析报告
用户总数:10,000人社交关系:111,220条群组数量:500个消息记录:100,000条行为记录:239,834条。
2025-06-06 22:15:21
915
原创 基于YOLOv11的光栅检测系统(Python源码+Flask Web界面+数据集)
本项目采用自建光栅检测数据集,包含数百张光栅目标图片及对应标注,全部图片均采集自真实场景。数据集采用YOLO标准格式进行标注,类别为raster。所有数据已按训练集和验证集规范整理,可直接用于目标检测模型的训练与评估。Flask 是一个用 Python 编写的轻量级 Web 应用框架,具有简单易用、扩展性强等特点。它非常适合快速开发和部署基于 Web 的人工智能应用。通过 Flask,可以将深度学习模型与前端界面无缝集成,实现模型的在线推理和结果可视化。
2025-06-05 18:30:31
761
原创 基于YOLOv11的交通标志牌检测系统(Python源码+Flask Web界面+数据集)
本项目采用自建交通标志牌检测数据集,包含数百张交通标志图片及对应标注,涵盖“警告标志(warning)”和“提示标志(alert)”等类别。所有图片均为真实交通场景采集,标注格式为YOLO标准格式。数据集已整理为训练集,便于直接用于目标检测模型的训练与评估。Flask 是一个用 Python 编写的轻量级 Web 应用框架,具有简单易用、扩展性强等特点。它非常适合快速开发和部署基于 Web 的人工智能应用。通过 Flask,可以将深度学习模型与前端界面无缝集成,实现模型的在线推理和结果可视化。
2025-06-05 18:24:04
549
原创 基于YOLOv11的教学行为规范检测系统(Python源码+Flask Web界面+数据集)
本项目采用VOC格式教学行为检测数据集,包含 stand、sit、write、phone 四类教学行为。数据集已划分为训练集和验证集,标注准确,类别分布健康但略有不均衡。Flask 是一个用 Python 编写的轻量级 Web 应用框架,具有简单易用、扩展性强等特点。它非常适合快速开发和部署基于 Web 的人工智能应用。通过 Flask,可以将深度学习模型与前端界面无缝集成,实现模型的在线推理和结果可视化。
2025-06-05 18:19:45
757
原创 基于YOLOv11的火灾烟雾检测系统(Python源码+Flask Web界面+数据集)
本项目采用VOC格式火灾烟雾检测数据集,包含2056张图片及对应标注,全部为火灾场景。数据集已划分为训练集、验证集和测试集。Flask 是一个用 Python 编写的轻量级 Web 应用框架,具有简单易用、扩展性强等特点。它非常适合快速开发和部署基于 Web 的人工智能应用。通过 Flask,可以将深度学习模型与前端界面无缝集成,实现模型的在线推理和结果可视化。
2025-06-05 18:13:37
643
1
原创 基于YOLOv11的智能零售柜商品识别系统(Python源码+Flask Web界面+数据集)
数据集介绍本项目采用标准VOC格式数据集,包含113类零售商品,共5422张图片,全部带有标注。数据按照7:2:1比例划分为训练集(3796张)、验证集(1084张)、测试集(542张)。细节图Flask 是一个用 Python 编写的轻量级 Web 应用框架,具有简单易用、扩展性强等特点。它非常适合快速开发和部署基于 Web 的人工智能应用。通过 Flask,可以将深度学习模型与前端界面无缝集成,实现模型的在线推理和结果可视化。
2025-06-05 17:43:41
712
原创 基于YOLOv11的玉米雄穗识别系统(Python源码+Flask Web界面+数据集)
数据集本项目采集了大量田间玉米雄穗图片,并进行了精细标注。数据集包含单一类别"tas"(玉米雄穗),共采集图片若干张,采用8:1:1比例划分为训练集、验证集、测试集。Flask 是一个用 Python 编写的轻量级 Web 应用框架,具有简单易用、扩展性强等特点。它非常适合快速开发和部署基于 Web 的人工智能应用。通过 Flask,可以将深度学习模型与前端界面无缝集成,实现模型的在线推理和结果可视化。
2025-06-05 17:37:09
501
原创 基于YOLOv8的便利店异常行为检测系统(Python源码+Flask界面+数据集)
通过摄像头采集便利店内异常行为图片,人工标注为YOLO格式。标注类别:Customer(顾客)、Staff(店员)、Product(商品)、Checkout(收银台)、StoreShelf(货架)。训练集细节图Flask 是一个用 Python 编写的轻量级 Web 应用框架,具有简单易用、扩展性强等特点。它非常适合快速开发和部署基于 Web 的人工智能应用。通过 Flask,可以将深度学习模型与前端界面无缝集成,实现模型的在线推理和结果可视化。
2025-06-05 17:29:37
393
原创 篮球行为检测系统项目教程(YOLO11+PyTorch+可视化)
本项目数据集包含多个篮球场景下的图片,涵盖了投篮、传球、运球等多种动作。所有图片均经过人工标注,标注内容包括篮球、篮球场、篮筐/球网、无球状态等类别。Flask 是一个用 Python 编写的轻量级 Web 应用框架,具有简单易用、扩展性强等特点。它非常适合快速开发和部署基于 Web 的人工智能应用。通过 Flask,可以将深度学习模型与前端界面无缝集成,实现模型的在线推理和结果可视化。
2025-06-05 17:13:13
694
原创 从环境搭建到实战:YOLO目标检测入门教程
还在为各种Python包冲突、环境报错头疼吗?别怕,Anaconda就是你的“神器”!1.1 为什么大家都在用Anaconda?对于刚入门的同学来说,环境配置绝对是“劝退”第一步。明明装了包,运行时却总是报错?不同项目需要不同的Python版本,切来切去好麻烦?网上教程一大堆,自己操作总是踩坑?Anaconda帮你一键解决!它就像是“Python的万能管家”,让你不用再为环境问题烦恼。1.2 只需三步,轻松拥有你的专属环境下载神器。
2025-06-05 17:03:26
757
原创 别被算法吓倒!3分钟搞懂机器学习四大门派
在当今数字化的时代,人工智能已成为推动各行业发展的强大动力,而机器学习作为人工智能的核心分支,更是其中的中流砥柱。从智能语音助手到精准医疗诊断,从金融风险预测到自动驾驶汽车,机器学习的应用无处不在,它如同一把神奇的钥匙,为我们开启了智能化生活的大门。机器学习通过构建模型,让计算机能够从数据中自动学习并做出预测或决策,极大地提高了效率和准确性。接下来,我们将深入探索机器学习的四大分类:有监督学习、无监督学习、强化学习和半监督学习,了解它们的独特原理与应用场景。
2025-06-05 17:00:52
947
原创 顶会论文写作秘籍:从科研小白到写作高手的结构化指南
尽管基于CNN的图像修复方法(如A、B)在规则缺失区域表现良好,但其在复杂不规则破损(如图1a)下常产生结构扭曲(问题P),主因在于。“代码/数据已开源:https://github.com/XX (Stars↑增加可信度)”(例:“类似于GPS导航的动态路径规划,我们提出了可微分拓扑搜索机制”)引用权威数据(如“据ICCV 2023统计,70%的图像修复论文仍受限于。“图像修复是一个重要领域,之前的方法效果不好,我们提出了新方法。:根据级别调整篇幅,T1用“颠覆性”,T2/T3用“显著改进”
2025-06-05 16:56:50
382
原创 从<Always Online>到 WeChat:AI 如何让青涩记忆里的他 “永生”
图3-1 WeClone核心模块1.聊天记录处理核心代码在 weclone/data/qa_generator.py清洗数据:去除手机号、身份证、邮箱、网址等隐私信息,并根据 settings.jsonc 的 blocked_words 过滤敏感内容。合并消息:将同一人短时间内的多条消息合并为一句。问答对生成:通过时间窗口策略,将“对方发问+自己回复”配对成问答对(Q-A Pair),用于微调。
2025-06-05 16:53:32
523
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人