💡本文主要内容: 详细介绍了基于YOLOv11的火灾烟雾检测系统,包括算法原理、Pytorch源码、训练数据集、Flask可视化Web界面。系统支持图片、视频、摄像头实时检测,支持置信度、IoU阈值调节,检测结果可视化与统计等功能。
01 数据集介绍
数据集
本项目采用VOC格式火灾烟雾检测数据集,包含2056张图片及对应标注,全部为火灾场景。数据集已划分为训练集、验证集和测试集。
细节图
02 基于YOLOv11的火灾检测
修改fire_data.yaml:
path: dataset/yolo
train: images/train
val: images/val
nc: 1
names: ['fire']
启动训练:
from ultralytics import YOLO
if __name__ == "__main__":
model = YOLO('models/yolo11n.pt')
model.train(
data='dataset/yolo/fire_data.yaml',
epochs=100,
imgsz=640,
batch=16,
device='0',
optimizer='SGD',
project='fire_smoke_results',
name='exp',
)
03 训练结果分析
3.1 混淆矩阵
本图展示了模型在"fire"和"background"两类上的预测分布。对角线上的深蓝色块占主导,表明大多数火灾目标被准确检测。fire类别的召回率为0.75,background类别的识别准确率为1.0,说明模型对背景的区分能力极强。仅有少量火灾目标被误判为背景,整体误检率较低。
3.2 F1分数-置信度曲线
曲线显示F1分数随置信度阈值的变化趋势。在置信度为0.369时,F1分数达到最高点0.73,说明此时模型在精度和召回率之间取得了最佳平衡。置信度过低时,F1分数较低,说明误报较多;置信度过高时,F1分数也下降,说明漏检增多。该图反映了当前模型在不同置信度下的最优表现区间。
3.3 精度-置信度曲线
曲线反映了随着置信度阈值的提高,模型预测精度的变化。当置信度为0.813时,精度达到完美值1.0,说明高置信度下模型几乎不会误报。随着置信度提升,精度稳步上升,在较高置信度时达到接近1.0的精度。
3.4 精度-召回率曲线
曲线展示了模型在不同召回率下的精度表现。当前模型mAP@0.5=0.776,属于较高的精度指标。曲线大部分区域保持在高位,说明模型在不同阈值下都能保持较高精度和召回率。曲线下的面积(mAP值)反映了模型在不同召回率下的平均精度表现。
3.5 召回率-置信度曲线
曲线反映了随着置信度阈值的提高,模型检出所有真实火灾目标的比例变化。在置信度为0时,召回率达到0.94,接近完美。随着置信度提升,召回率逐渐下降,说明模型变得更"保守",漏检增多。该图直观反映了当前模型在不同置信度下的漏检趋势。
04 Flask Web界面与系统设计
4.1 Flask简介
Flask 是一个用 Python 编写的轻量级 Web 应用框架,具有简单易用、扩展性强等特点。它非常适合快速开发和部署基于 Web 的人工智能应用。通过 Flask,可以将深度学习模型与前端界面无缝集成,实现模型的在线推理和结果可视化
4.2 依赖安装
pip install -r requirement.txt
4.3 系统功能与运行方式
python app.py
图片检测