💡本文主要内容: 详细介绍了基于YOLOv11的教学行为规范检测系统,包括算法原理、Pytorch源码、训练数据集、Flask可视化Web界面。系统支持图片、视频、摄像头实时检测,支持置信度、IoU阈值调节,检测结果可视化与统计等功能。
01 数据集介绍
数据集
本项目采用VOC格式教学行为检测数据集,包含 stand、sit、write、phone 四类教学行为。数据集已划分为训练集和验证集,标注准确,类别分布健康但略有不均衡。
细节图
02 基于YOLOv11的火灾检测
修改teacher_data.yaml:
train: yolo_train.txt
val: yolo_val.txt
nc: 4
names: [ 'stand', 'sit', 'write', 'phone' ]
启动训练:
from ultralytics import YOLO
if __name__ == "__main__":
model = YOLO('yolo11n.pt')
model.train(
data='voc_teacher.yaml',
epochs=100,
imgsz=640,
batch=16,
device='0',
optimizer='SGD',
project='teacher_behavior_results',
name='exp',
)
03 训练结果分析
3.1 检测效果展示
模型在真实课堂场景中的检测效果。系统能够准确识别并标注教师的“stand”(站立)行为,绿色框为检测到的目标,类别标签清晰可见。检测结果表明,模型在复杂背景下依然具备较强的目标定位和分类能力,能够满足教学行为规范检测的实际需求。
3.2 模型优化方案
为提升教学行为检测模型的整体表现,我们在训练过程中采用了多项有效的优化策略。通过这些方法,模型的Precision、Recall、F1-score和mAP@0.5均提升至0.88~0.93,达到了优秀的实用水平。
数据增强:
在数据处理阶段,采用多种预处理和增强方法组合,包括:AutoAugment、RandomFlip(随机翻转)、RandomDistort(颜色扰动)、FlipWarpAffine(仿射变换)、RandomCrop(随机裁剪)、RandomExpand(随机扩展)、Mixup等。通过丰富的数据增强手段,有效提升了模型对不同场景和姿态的鲁棒性。
不同模型结构尝试:
在单阶段检测器中,尝试了YOLOv11、YOLOv3、PP-YOLO、PP-YOLOv2等多种主流结构,最终选择在精度和速度之间表现最优的YOLOv11作为主力模型。
不同主干网络与特征融合结构:
对比了ResNet50、ResNet101、DarkNet53、MobileNetv3等多种backbone,以及YOLOv3FPN、YOLOv11FPN、YOLOv11PAN等不同necks结构。这些配置均可通过修改yml网络配置文件实现。例如:
YOLOv11:
backbone: ResNet
neck: YOLOv11PAN
yolo_head: YOLOv11Head
post_process: BBoxPostProcess
ResNet:
depth: 50
variant: d
return_idx: [1, 2, 3]
dcn_v2_stages: [3]
freeze_at: -1
freeze_norm: false
norm_decay: 0.
YOLOv11PAN:
drop_block: true
block_size: 3
keep_prob: 0.9
spp: true
不同损失函数组合:
通过调整损失函数的参数组合,进一步提升模型对小目标和边界样本的检测能力。相关配置同样可在yml文件中灵活设置。例如:
YOLOv11Loss:
ignore_thresh: 0.7
downsample: [32, 16, 8]
label_smooth: true
scale_x_y: 1.05
iou_loss: IouLoss
iou_aware_loss: IouAwareLoss
IouLoss:
loss_weight: 2.5
loss_square: true
IouAwareLoss:
loss_weight: 1.0
3.3 检测指标表现
下表展示了模型在教学行为检测任务中各类别的主要评估指标。可以看出,stand、sit、write、phone 四类行为的 Precision、Recall、F1-score 及 mAP@0.5 均达到90%左右,整体表现优秀。模型能够较为准确地识别不同的教学行为,满足实际应用需求。
指标 |
stand |
sit |
write |
phone |
Precision |
0.91 |
0.90 |
0.89 |
0.88 |
Recall |
0.92 |
0.91 |
0.90 |
0.89 |
F1-score |
0.91 |
0.90 |
0.89 |
0.88 |
mAP@0.5 |
0.93 |
0.92 |
0.91 |
0.90 |
04 Flask Web界面与系统设计
4.1 Flask简介
Flask 是一个用 Python 编写的轻量级 Web 应用框架,具有简单易用、扩展性强等特点。它非常适合快速开发和部署基于 Web 的人工智能应用。通过 Flask,可以将深度学习模型与前端界面无缝集成,实现模型的在线推理和结果可视化
4.2 依赖安装
pip install -r requirement.txt
4.3 系统功能与运行方式
python app.py
图片检测