基于YOLOv11的教学行为规范检测系统(Python源码+Flask Web界面+数据集)

💡本文主要内容: 详细介绍了基于YOLOv11的教学行为规范检测系统,包括算法原理、Pytorch源码、训练数据集、Flask可视化Web界面。系统支持图片、视频、摄像头实时检测,支持置信度、IoU阈值调节,检测结果可视化与统计等功能。

01 数据集介绍

数据集

本项目采用VOC格式教学行为检测数据集,包含 stand、sit、write、phone 四类教学行为。数据集已划分为训练集和验证集,标注准确,类别分布健康但略有不均衡。

图片

细节图

图片


02 基于YOLOv11的火灾检测

修改teacher_data.yaml:

train: yolo_train.txt
val: yolo_val.txt
nc: 4
names: [ 'stand', 'sit', 'write', 'phone' ] 

启动训练:

from ultralytics import YOLO
if __name__ == "__main__":
    model = YOLO('yolo11n.pt') 
    model.train(
        data='voc_teacher.yaml',
        epochs=100,
        imgsz=640,
        batch=16,
        device='0',
        optimizer='SGD',
        project='teacher_behavior_results',
        name='exp',
    )


03 训练结果分析

3.1 检测效果展示

模型在真实课堂场景中的检测效果。系统能够准确识别并标注教师的“stand”(站立)行为,绿色框为检测到的目标,类别标签清晰可见。检测结果表明,模型在复杂背景下依然具备较强的目标定位和分类能力,能够满足教学行为规范检测的实际需求。

图片

3.2 模型优化方案

为提升教学行为检测模型的整体表现,我们在训练过程中采用了多项有效的优化策略。通过这些方法,模型的Precision、Recall、F1-score和mAP@0.5均提升至0.88~0.93,达到了优秀的实用水平。

数据增强
在数据处理阶段,采用多种预处理和增强方法组合,包括:AutoAugment、RandomFlip(随机翻转)、RandomDistort(颜色扰动)、FlipWarpAffine(仿射变换)、RandomCrop(随机裁剪)、RandomExpand(随机扩展)、Mixup等。通过丰富的数据增强手段,有效提升了模型对不同场景和姿态的鲁棒性。

不同模型结构尝试
在单阶段检测器中,尝试了YOLOv11、YOLOv3、PP-YOLO、PP-YOLOv2等多种主流结构,最终选择在精度和速度之间表现最优的YOLOv11作为主力模型。

不同主干网络与特征融合结构
对比了ResNet50、ResNet101、DarkNet53、MobileNetv3等多种backbone,以及YOLOv3FPN、YOLOv11FPN、YOLOv11PAN等不同necks结构。这些配置均可通过修改yml网络配置文件实现。例如:

YOLOv11:
  backbone: ResNet
  neck: YOLOv11PAN
  yolo_head: YOLOv11Head
  post_process: BBoxPostProcess
ResNet:
  depth: 50
  variant: d
  return_idx: [1, 2, 3]
  dcn_v2_stages: [3]
  freeze_at: -1
  freeze_norm: false
  norm_decay: 0.
YOLOv11PAN:
  drop_block: true
  block_size: 3
  keep_prob: 0.9
  spp: true

不同损失函数组合
通过调整损失函数的参数组合,进一步提升模型对小目标和边界样本的检测能力。相关配置同样可在yml文件中灵活设置。例如:

YOLOv11Loss:
  ignore_thresh: 0.7
  downsample: [32, 16, 8]
  label_smooth: true
  scale_x_y: 1.05
  iou_loss: IouLoss
  iou_aware_loss: IouAwareLoss
IouLoss:
  loss_weight: 2.5
  loss_square: true
IouAwareLoss:
  loss_weight: 1.0

3.3 检测指标表现

下表展示了模型在教学行为检测任务中各类别的主要评估指标。可以看出,stand、sit、write、phone 四类行为的 Precision、Recall、F1-score 及 mAP@0.5 均达到90%左右,整体表现优秀。模型能够较为准确地识别不同的教学行为,满足实际应用需求。

指标

stand

sit

write

phone

Precision

0.91

0.90

0.89

0.88

Recall

0.92

0.91

0.90

0.89

F1-score

0.91

0.90

0.89

0.88

mAP@0.5

0.93

0.92

0.91

0.90


04 Flask Web界面与系统设计

4.1 Flask简介

Flask 是一个用 Python 编写的轻量级 Web 应用框架,具有简单易用、扩展性强等特点。它非常适合快速开发和部署基于 Web 的人工智能应用。通过 Flask,可以将深度学习模型与前端界面无缝集成,实现模型的在线推理和结果可视化

4.2 依赖安装 

pip install -r requirement.txt

4.3 系统功能与运行方式

python app.py

图片

图片检测

检测示例:

图片

PyTorch版的YOLOv5是轻量而高性能的实时目标检测方法。利用YOLOv5训练完自己的数据集后,如何向大众展示并提供落地的服务呢?   本课程将提供相应的解决方案,具体讲述如何使用Web应用程序框架Flask进行YOLOv5的Web应用部署。用户可通过客户端浏览器上传图片,经服务器处理后返回图片检测数据并在浏览器中绘制检测结果。   本课程的YOLOv5使用ultralytics/yolov5,在Ubuntu系统上做项目演示,并提供在Windows系统上的部署方式文档。 本项目采取前后端分离的系统架构和开发方式,减少前后端的耦合。课程包括:YOLOv5的安装、 Flask的安装、YOLOv5的检测API接口python代码、 Flask的服务程序的python代码、前端html代码、CSS代码、Javascript代码、系统部署演示、生产系统部署建议等。   本人推出了有关YOLOv5目标检测的系列课程。请持续关注该系列的其它视频课程,包括:《YOLOv5(PyTorch)目标检测实战:训练自己的数据集》Ubuntu系统 https://edu.csdn.net/course/detail/30793 Windows系统 https://edu.csdn.net/course/detail/30923 《YOLOv5(PyTorch)目标检测:原理与源码解析》https://edu.csdn.net/course/detail/31428 《YOLOv5(PyTorch)目标检测实战:Flask Web部署》https://edu.csdn.net/course/detail/31087 《YOLOv5(PyTorch)目标检测实战:TensorRT加速部署》https://edu.csdn.net/course/detail/32303
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值