
OpenMV入门
文章平均质量分 93
ZeroEgg_
我从来没有觉得码字快乐过(TwT)
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Op:从零开始的Openmv学习教程(3)低通滤波器
本文介绍了图像处理中的卷积核基础概念及其应用。卷积核是用于图像滤波的小型矩阵,通过卷积运算实现特征提取,大小影响感受野和计算量。文章详细讲解了锚点、边界扩充和步长等基础概念,并比较了多种低通滤波器的使用效果:均值滤波使图像平滑模糊,高斯滤波减少高斯噪点,中值滤波去除椒盐噪点,双边滤波实现边缘保留的磨皮效果。此外还介绍了自定义卷积核和针对不同噪声(椒盐、高斯)的最佳处理方案,其中中值滤波对椒盐噪声效果显著,高斯滤波适用于高斯噪声处理。原创 2025-09-03 22:39:40 · 999 阅读 · 0 评论 -
Op:从零开始的Openmv学习教程(0)图像处理基础
本文介绍了图像处理中的旋转操作和色彩设置方法。图像旋转可通过镜像、翻转和转置三种基本操作组合实现0°、90°、180°和270°旋转。色彩设置支持RGB彩色、灰度和二值化模式,其中二值化可使用binary()函数或OTSU算法自动计算最佳阈值。OTSU算法通过最大化类间方差确定分割阈值,适用于自动图像二值化处理。原创 2025-09-01 12:46:18 · 577 阅读 · 0 评论 -
Op:从零开始的Openmv学习教程(2)色块追踪应用实例——循线
本文介绍了两种基于OpenMV的视觉循线算法。基础算法通过划分多个ROI区域并加权计算色块中心位置,转换为偏转角度实现循线控制。改进算法采用Theil-Sen线性回归和霍夫变换,对二值化图像进行直线检测,能更好地处理直角转弯和十字路口等复杂场景。文中比较了最小二乘法和泰尔森斜率估计的特点,指出后者对离群点更具鲁棒性。两种方法均给出了完整代码实现,并提供了相关技术原理的补充说明链接,便于读者深入理解算法细节。原创 2025-08-05 00:12:31 · 659 阅读 · 0 评论 -
Op:从零开始的Openmv学习教程 (1) 图像处理 色块追踪
本文介绍了基于OpenMV的色块追踪方法,包括灰度模式和彩色模式下的单色/多色色块追踪实现。主要内容为:1)灰度模式下通过设置阈值参数进行单色块追踪;2)RGB565彩色模式下扩展单色块追踪;3)通过阈值列表实现多色块同时追踪;4)基于颜色直方图和统计信息开发自动阈值计算的灰度/彩色追踪算法。文章详细剖析了find_blobs()函数参数配置、blob.code()位运算原理,并提供了完整的Python实现代码,适合OpenMV初学者学习图像处理基础。原创 2025-08-04 01:27:11 · 1258 阅读 · 1 评论