知识库领域的 LLM 大模型和 Embedding 大模型有区别么?为什么在 RAG 领域,需要单独设置 embedding 大模型?
在人工智能领域,大型语言模型(LLM)和嵌入模型(Embedding Model)是自然语言处理(NLP)中的两大关键技术,尤其在知识库构建和信息检索中发挥着重要作用。
尽管它们都属于 NLP 范畴,但它们在功能、应用场景和资源需求上存在显著差异。
Embedding 模型的主要任务是将文本转换为数值向量表示。这些向量可以用于计算文本之间的相似度、进行信息检索和聚类分析。
Embedding 模型的输出是数值向量。计算机在理解词句含义的时候,是不具备能力的,计算机只能看到一段 01010111 这样的结果。然而,人类看到的词句,是赋予了内部的含义,还带了大量的普世认知。
参考台大李宏毅老师的一张图,做一下说明。
当我们人类理解 猫 vs 狗 和 狗 vs 花的差异的时候,能自然的理解,觉得猫和狗是更加相近的物种;而狗和花,一个是动物,另一个是植物,偏差会更多。
那么,如何让计算机能理解这些词背后的含义呢。所使用的技术就是 Embedding。一句话简单说,embedding 就是把计算机无法理解的字词,转换成一个向量矩阵。
比较相似,或者含意比较接近的词向量之间的距离,是更加接近的。比如 dog 和 cat,dog 和 rabbit; 然而,flower 和 dog,就会隔得比较远。
Embedding 模型广泛应用于文本相似度计算、信息检索、聚类和推荐系统。
在大模型知识库领域中,单独设置 Embedding 模型可以降低系统资源占用和响应延迟,特别是在大规模知识库构建和信息检索中,可以极大程度提升经济型和效率。一般的应用包含以下几个部分:
典型应用流程
\1. 知识库构建阶段
- 使用Embedding模型将文档转换为向量,存储向量到向量数据库(如FAISS、Milvus)
\2. 检索阶段
- 用相同的Embedding模型将用户问题转换为向量,在向量数据库中快速检索相似文档
\3. 回答生成阶段
- 将检索到的相关文档作为上下文,使用LLM生成最终答案
推荐的Embedding模型
Crew.ai 官方组件支持的 Embedding 模型有:
- openai:OpenAI 的嵌入模型
- google:Google 的文本嵌入模型
- azure:Azure OpenAI 嵌入
- ollama:使用 Ollama 进行局部嵌入
- vertexai:Google Cloud VertexAI 嵌入
- cohere:Cohere 的嵌入模型
- 基岩版:AWS Bedrock 嵌入
- huggingface: Hugging Face 模特
- watson:IBM Watson 嵌入
接下来,我们看一下如何在本地安装 Ollama 提供的 embedding 模型。本案例选用的是 nomic-embed-text。
项目参考链接:https://ollama.com/search?c=embedding
先激活对应的工作环境。
source crewai-env/bin/activate
每次开始新的终端会话时,都需要重新激活虚拟环境。如果您看到命令提示符前面有 (crewai) 这样的标识,说明环境已经正确激活。
安装依赖
pip install crewai ollama
看到这个代表已经激活
启动 ollama
ollama serve
安装 embedding 模型
ollama pull nomic-embed-text
因为要配置给其他的服务用,所以需要解决 Ollama 的 embedding host获取问题。
要获取 Ollama 的 embedding host,有以下几种方法:
默认地址:
Ollama 默认运行在 http://localhost:11434。如果您是在本地机器上安装的 Ollama,通常不需要更改这个地址。
如果不确定是否这个端口,验证 Ollama 服务是否运行及其地址,可以按照这个方法执行。
# 检查 Ollama 服务状态curl http://localhost:11434/api/version
看到 11434 的监听结果,说明这个端口就是 ollama 的embedding 模型开放的端口。
到这一步,就代表着 ollama 的embedding 模型已经安装成功。可以对接给其他的应用和服务了。
如何学习AI大模型?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高
那么针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈
学习路线
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓