An Efficient and Self - Adapted Approach to the Sharpening of Color Images 论文解读

目录

      一、主要原理

     二、具体实现方法

1.RGB转HSV。无需多言,网络上很多介绍可以参考;

2. 确定最大叠加幅度 Δ

3边缘检测机制

4 用于去除孤立像素的低通滤波

5 亮度(V)通道的边缘锐化

6 HSV 到 RGB 的转换

三、算法效果


      一、主要原理

        《An Efficient and Self - Adapted Approach to the Sharpening of Color Images》是一篇关于彩色图像锐化的论文。该论文提出了一种高效且自适应的彩色图像锐化方法,旨在突出图像中的边缘和细节,同时保留图像的原始信息。

  1. 颜色模型转换:将待锐化的彩色图像转换到 HSV 颜色模型,仅对亮度(Value)通道进行锐化处理,而色调(Hue)和饱和度(Saturation)通道保持不变。这样可以在不改变颜色信息的前提下,对图像的亮度细节进行增强。
  2. 边缘像素检测:对亮度通道应用提出的边缘检测器和低通滤波器,以挑选出边界周围的像素。边缘检测器用于识别可能的边缘区域,低通滤波器则用于辅助确定边界像素,排除噪声干扰,从而准确地定位出需要进行锐化处理的像素。
  3. 像素调整:对于检测到的边缘或边界周围的像素进行调整,以锐化边界,而非边缘像素则保持不变。边缘像素的增量或减量幅度是基于图像的全局统计信息和待锐化像素的局部统计信息自适应确定的。这种自适应的调整方式能够根据图像的具体内容,灵活地调整锐化的强度,既能突出图像中的不连续性,又能保留图像中的大部分原始信息。
  4. 图像合成:将调整后的亮度通道与未改变的色调和饱和度通道进行整合,得到锐化后的彩色图像。通过这种方式,能够在保持颜色信息不变的情况下,有效地增强图像的视觉效果。
  5. 实验验证:通过在自然图像上进行大量实验,验证了所提出方法的有效性和高效性。实验结果表明,该方法能够在锐化图像的同时,保持图像的自然外观,并且在处理速度上也具有一定的优势。
  6. 主要流程图如下:

二、具体实现方法

1.RGB转HSV。无需多言,网络上很多介绍可以参考;
2. 确定最大叠加幅度 Δ

        由于人类视觉感知系统对亮度值的变化最为敏感 [19],因此在将图像从 RGB 颜色空间转换到 HSV 颜色空间后,仅使用亮度(Value)通道进行图像锐化处理。也就是说,我们只需得到锐化后的亮度通道,然后将调整后的亮度通道与原始的色调(Hue)通道和饱和度(Saturation)通道相结合,即可获得锐化后的彩色图像。

        在亮度通道的锐化过程中,我们将亮度通道视为灰度图像进行处理。为突出图像中的不连续区域(边缘),需要对那些待调整的边缘像素施加一个叠加幅度。我们知道,更大的叠加幅度能带来更好的锐化效果,但同时也可能导致边缘像素周围的亮度值出现饱和现象。为自动确定最大叠加幅度 Δ,本文结合待锐化的亮度(V)通道的全局统计信息来确定 Δ 的值,从而避免过度锐化的情况发生。

        为此,我们首先通过以下公式计算出亮度(V)通道的最小值(Min)、最大值(Max)、中间值(Mid)和平均值(Avg):

        公式中𝑉₍𝑖,𝑗₎是图像亮度通道的像素值表示方式,括号内(𝑖, 𝑗)对应图像像素的坐标(通常𝑖代表垂直方向的行索引,𝑗代表水平方向的列索引);𝑀(高度)和𝑁(宽度)是描述图像尺寸的常用参数,单位均为 “像素(pixel)”。

        为确定一个适用于各类待锐化图像的叠加幅度 Δ,以突出边缘或边界的不连续性,我们通过大量实验发现,取值为 Max/8(即亮度通道最大值的 1/8)是一个较好的选择。也就是说,当对这些边缘像素施加 Max/8 的增量或减量时,人类视觉系统通常能明显感知到锐化前后的差异。此外,对于亮度较高的图像,需要略大于 Max/8 的叠加幅度;而对于亮度较低的图像,略小于 Max/8 的叠加幅度已足够。因此,在选择最大叠加幅度 Δ 时,我们将 Max/8 乘以一个修正项 Avg/Mid(即亮度通道平均值与中间值的比值)。本文中的最大叠加幅度 Δ 最终由下式确定:

        其中,Max、Mid、Avg分别是八式中计算的值。

3边缘检测机制

        考虑到运行时性能,本文提出一种简单且有效的亮度(Value)通道边缘检测方法,我们将该边缘检测方法称为水平垂直微分器(Horizontal and Vertical Differentiator,简称 HVD)。对于像素𝑥周围的不连续性,可通过检测(𝑥, 𝑥_𝑊)与(𝑥, 𝑥_𝑁)之间的亮度差值来轻松识别(见下图 )。随后,通过判断下述公式中的第一个条件是否成立,即可确定像素𝑥是否位于边缘附近:

4 用于去除孤立像素的低通滤波

        在边缘检测过程中,使用所提出的一阶导数 HVD(水平垂直微分器)边缘检测器时,部分孤立像素也可能被检测为边缘附近像素。因此,在二值图像𝑔中(如式 (11) 所示),不仅会包含边缘信息,还可能混入椒盐噪声。为解决这一问题,需引入低通滤波过程,以排除这些孤立像素,避免其被误判为边缘附近像素。要判断某一像素𝑥是否为真实边缘像素,只需验证以下不等式是否成立:

        其中,𝑁₈(𝑥) 表示像素𝑥的 8 邻域(即与像素𝑥直接相邻的 8 个像素),𝜃ₗₚբ是一个预先定义的阈值,取值范围在 0 到 8 之间。也就是说,我们需要统计二值图像𝑔(见图 2)中像素𝑥的 8 个邻域内值为 1 的像素数量。若该数量小于预先设定的阈值𝜃ₗₚբ,则将像素𝑥判定为孤立点,并从边缘像素列表中剔除。

        本文中,𝜃ₗₚբ的取值被设定为 2。这样设定的原因是:对于采用所提 HVD(水平垂直微分器)方法检测边缘的场景,若有一条边缘线段经过像素𝑥,那么检测到的边缘像素数量至少为 2 个。因此,将𝜃ₗₚբ设为 2 是合理的。

5 亮度(V)通道的边缘锐化

        在该步骤中,对于检测出的边缘附近像素,通过增加或减少其亮度值来突出边缘的不连续性;而非边缘像素的亮度值则保持不变。为突出较小的边缘不连续性,同时避免图像过度锐化,叠加幅度需根据图像的局部统计信息进行自适应调整。

        因此,我们首先计算一个小型局部区域的亮度平均值(LocalMean,局部均值),该区域包含待调整的边缘像素𝑥及其 8 邻域像素(共 9 个像素,见图 2)。随后,比较像素𝑥的亮度值与 LocalMean 的大小:若像素𝑥的亮度值大于 LocalMean,则为其叠加一个增量𝛿ₓ;若像素𝑥的亮度值小于 LocalMean,则从其亮度值中减去𝛿ₓ。叠加值𝛿ₓ通过自适应方式确定,具体公式如下:

        其中,𝑠 是取值范围在 0 到 1 之间的缩放因子,用于控制锐化程度;Δ 为式 (9) 中求得的值。实际上,式 (12) 括号内的项用于实现局部自适应调整。显然,若像素𝑥的亮度值与局部均值(LocalMean)接近,则会得到更大的𝛿ₓ值(接近 Δ),这意味着对于不连续性较小的边缘,将采用更大的叠加幅度,反之亦然。像素𝑥的锐化后亮度值̂𝑥可由下式表示:

6 HSV 到 RGB 的转换

        在最后一步中,经过调整的亮度(Value)通道(现为高分辨率通道)会与低分辨率的色调(Hue)通道和饱和度(Saturation)通道相结合,得到锐化后的彩色图像(即高分辨率彩色图像)。此时,锐化后的彩色图像为 HSV 颜色空间格式;若有需要,可通过式 (4) 至式 (7) 将其转换到 RGB 颜色空间。

三、算法效果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大熊背

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值