使用Python对知识文本进行分块

	使用大型语言模型时,切勿忽略文本分块的重要性,其对处理结果的好坏有重大影响。接下来介绍常用的一些文本分块方法。

1.1 一般的文本分块方法

如果不借助任何包,直接按限制长度切分方案。

text =" 我是一个名为 chatGLm3-68 的人工智能助手,是基于清华大学 KEG 实验室和智谱 AI 公司于 2023 年共同训练的语言模型开发的。我的目标是通过回答用户提出的问题来帮助他们解决问题。由于我是一个计算机程序,所以我没有实际的存在,只能通过互联网来与用户交流。"
chunks = []
chunk_size=128
for i in range(0, len(text), chunk_size):
    chunk = text[i:i+chunk_size]
    chunks.append(chunk)
print(chunks)

在这里插入图片描述

2.2 正则拆分的文本分块方法

import re
def split_sentences(text):
    # 使用正则表达式匹配中文句子结束的标点符号
    sentence_delimiters = re.compile(u'[。?!;]|\n')
    sentences = sentence_delimiters.split(text)
    # 过滤掉空字符串
    sentences = [s.strip() for s in sentences if s.strip()]
    return sentences

text =
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值