合格的算法工程师需要具备什么技能

本文整理了推荐算法、计算机视觉及NLP算法工程师的岗位要求,包括编程语言、框架使用、项目经验和理论基础等方面。

本篇来自我在知乎上的一个回答:https://www.zhihu.com/question/448311745/answer/1784541274

想要了解算法工程师需要掌握的技能,我觉得最直接有效的方式就是去看看各公司对于算法岗社招的要求。本篇只做一些简单的整理和罗列。

某大厂,推荐算法工程师的要求:

  1. 熟练掌握C/C++和python语言编程,熟悉linux开发环境,有扎实的数据结构和算法设计功底;
  2. 熟悉推荐业务常用理论和算法,在多个领域(如排序模型,召回模型,用户画像,深度学习等)有三年以上实际工作经验;
  3. 有优秀的逻辑思维能力和数据分析能力,善于分析和解决问题;
  4. 良好的沟通能力与团队协作能力;有推荐系统,广告系统,搜索引擎等开发经验;
  5. 熟练掌握机器学习、深度学习的基础理论和方法,并在自然语言处理任务中有实际应用经验者优先;
  6. 熟练使用一种或几种深度学习框架(如tensorflow、caffe、mxnet、pytorch等),或者熟悉spark、hadoop分布式计算编程者优先。

计算机视觉算法工程师的要求,来自某视觉公司:

  1. 过硬的科研背景:深度学习/机器学习;计算机视觉(包括分类,检测,分割,跟踪,SLAM和三维重建);图像或信号处理;计算摄影学和计算机图形学。
  2. 扎实的编程基础;
  3. 熟悉本研究领域的最新研究成果,公开数据集,和相关的开源系统;
  4. 有很强的自学能力和独立思考能力,善于思考和表达自己的想法;同时又具备良好的团队合作精神;
  5. 熟悉 Python 等至少一门脚本语言,使用过 Theano, Caffe, Torch, TensorFlow 等开源深度学习框架优先;
  6. 有深度模型训练,图像分类.物体检测与分割.视频分析.三维建模.计算机图形学等相关科研经历者(例如会议作者)优先。

NLP算法工程师的要求,来自某中厂:

  1. 正直诚信,有责任感,有激情,对技术落地创造影响力感到兴奋。
  2. 模式识别/人工智能/数学/计算机相关专业,硕士以上学历。
  3. 熟悉NLP的基础能力,包括分词、词性标注、命名实体识别、依存句法分析、文本分类、文本检索等,能使用传统统计模型和最新的深度学习方法构建以上能力。
  4. 在人工智能领域有一定的积累,能够从复杂的业务场景中进行算法选型、算法优化以及不断提升效果,并且能够真正应用在商业环境,从技术角度造风,创造新的商业机会,成为商业智能的驱动者。
  5. 具有较强编程能力(特别是Python和Java),熟练使用Linux环境进行NLP研发,有实际大型复杂系统构建的经历。
  6. AI领域相关英文资料的快读阅读能力,学习能力强,能独立分析并解决问题。
  7. 团队协作意识,具备和工程,测试,产品团队同学对话的能力。
### NLP算法工程师的工作职责 NLP算法工程师的主要工作职责涵盖了多个方面,具体如下: - **研究与开发**:承担将前沿理论转化为实际应用的任务,针对业务需求深入探究并提出创新的技术解决方案。这不仅限于自然语言处理领域,还包括机器学习、深度学习等方面[^4]。 - **数据处理**:对原始数据进行预处理操作,如缺失值填充、异常值检测与修正、数据标准化等,确保输入到模型中的数据质量良好。同时执行特征工程任务,即从原始数据中抽取有价值的特性用于建模过程。 - **模型构建与优化**:负责创建高效的算法模型,并对其进行调整以达到最佳性能表现。此过程中会运用交叉验证、网格搜索等多种策略来寻找最优参数配置,同时关注模型的泛化能力和计算资源消耗等问题。 ### 技能要求 为了胜任上述职责,一名合格的NLP算法工程师具备以下技能: - 编程能力上,需要精通至少一门主流编程语言(比如Python),并且能够灵活运用各种数据结构和经典算法解决问题[^2]。 - 对于特定工具和技术栈而言,则要熟悉诸如TensorFlow(Keras)这样的深度学习框架或者StanfordNLP、NLTK这类专注于文本分析的专业软件包[^3]。 - 掌握必要的数学基础知识对于理解和改进现有算法至关重要,尤其是统计学原理及其在机器学习中的应用场景[^5]。 - 良好的沟通协作技巧同样不可或缺,在面对复杂的工程项目时可以有效地与其他成员交流想法共同克服困难。 ```python import tensorflow as tf from nltk.tokenize import word_tokenize # 示例代码展示如何加载预训练模型并对一句话进行分词 model = tf.keras.models.load_model('path_to_saved_model') text = "This is an example sentence." tokens = word_tokenize(text) print(tokens) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值