论文:Cascade R-CNN: Delving into High Quality Object Detection 阅读笔记

本文围绕《Cascade R-CNN: Delving into High Quality Object Detection》展开。介绍了论文背景,指出阈值设置不当会导致正负样本比例失衡、检测器性能下降等问题。提出使用多阶段R - CNN的想法,阐述了回归损失函数的变化,还介绍了模型结构和处理流程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、论文

Cascade R-CNN: Delving into High Quality Object Detection 

https://arxiv.org/abs/1712.00726

https://github.com/zhaoweicai/cascade-rcnn

二、论文笔记

1、背景

a)、阈值设的太小,正负样本比例失衡,负样本太多,使得检测器对于有较大的阈值的错误框检测不够灵敏。

b)、阈值设的太大,数据量少导致检测器性能下降,以及过拟合。

 

2、想法

使用一个多阶段的R-CNN(基于两阶段的Faster-RCNN),使用前面阶段的模型的输出训练下一个模型,因为每个模型的输出的iou总是好过它输入的iou

3、细节 R-CNN中回归损失使用的是 L2函数,到Fast- RCNN中使用的是smoothed L1 

相当于是在小于1的部分使用2范数(更smooth,且求导方便),在大于1的部分使用1范数(避免梯度爆炸,同时减少outlier(离群点)的影响),一些离群点的如果使用L2的话,损失会很大,同时,对于远离真实值得输出,如果使用L2的话,稍微有一点偏差那么损失是平方级的。

 

4、模型结构

最后一个,也就是使用了多个级联的head(每个级别使用了不同的iou阈值,且不断升高)

b的结构是使用了想同的头也就是,共享参数?

5、处理流程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值