自然语言处理处理之词向量构建方法实战

本文探讨了词向量技术的两大主流方法:word2vec和fasttext。提供了word2vec的TensorFlow实现示例,并深入解析了fasttext的原理与实践,适合于中文词向量构建的学习与应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

word2vec

主要需要做中文的词向量,这里在github上找到一个比较好的例子,可以拿来参考一下。

具体详细介绍请知乎专栏https://zhuanlan.zhihu.com/p/28979653
github地址:https://github.com/Deermini/word2vec-tensorflow

 

fasttext

fasttext官方文档,上面有很多的已经训练好的词向量

文本处理——fastText原理及实践(四) (这篇文章讲解的很详细,强烈推荐)

gensim中的fasttext教程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值