学习笔记,仅供参考,有错必纠
关键词:特征选择;蚁群优化;高维数据;分类;最佳特征子集大小
随便看看
A two-stage hybrid ant colony optimization for high-dimensional feature selection
摘要
蚁群优化算法以其优异的全局/局部搜索能力和灵活的图形表示方式被广泛应用于特征选择。然而,目前基于蚁群算法的特征选择方法主要应用于低维数据集。对于成千上万维数据集,由于搜索空间的指数增长,**搜索最优特征子集(OFS)**变得极其困难。
本文提出了一种用于高维特征选择的两阶段混合蚁群算法。作为一个附加阶段,它使用区间策略来确定OFS的大小,以用于随后的OFS搜索。与传统的一步确定OFS大小和同时搜索OFS的方法相比,提前检查部分特征数端点的性能有助于降低算法的复杂度,缓解算法陷入局部最优的问题。此外,先进的蚁群算法嵌入了混合模型,利用特征的内在关联属性和分类性能来指导OFS搜索。
在11个高维公共数据集上的测试结