文献记录(part37)--A two-stage hybrid ant colony optimization for high-dimensional feature selection

本文提出了一种两阶段混合蚁群优化算法(TSHFS-ACO)用于高维特征选择。该算法通过区间策略确定最佳特征子集(OFS)大小,以解决高维数据集中的搜索难题。先进蚁群算法利用特征相关性和分类性能指导搜索,减少局部最优问题。实验证明,该方法在11个高维数据集上表现优秀,且运行时间较短。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

学习笔记,仅供参考,有错必纠

关键词:特征选择;蚁群优化;高维数据;分类;最佳特征子集大小

随便看看



A two-stage hybrid ant colony optimization for high-dimensional feature selection


摘要


蚁群优化算法以其优异的全局/局部搜索能力灵活的图形表示方式被广泛应用于特征选择。然而,目前基于蚁群算法的特征选择方法主要应用于低维数据集。对于成千上万维数据集,由于搜索空间的指数增长,**搜索最优特征子集(OFS)**变得极其困难。

本文提出了一种用于高维特征选择的两阶段混合蚁群算法。作为一个附加阶段,它使用区间策略来确定OFS的大小,以用于随后的OFS搜索。与传统的一步确定OFS大小和同时搜索OFS的方法相比,提前检查部分特征数端点的性能有助于降低算法的复杂度,缓解算法陷入局部最优的问题。此外,先进的蚁群算法嵌入了混合模型,利用特征的内在关联属性和分类性能来指导OFS搜索

在11个高维公共数据集上的测试结

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GUI Research Group

谢谢支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值