学习笔记,仅供参考,有错必纠
关键词:多元时间序列;数据挖掘;聚类分析;复杂网络
Multivariate time series clustering based on complex network
摘要
由于时间序列在各个领域的广泛存在,近年来时间序列数据挖掘(尤其是时间序列聚类)的研究日益增多。聚类等技术可以从时间序列数据中提取有价值的信息和潜在模式。在这方面,多元时间序列的聚类分析由于其高维数而具有挑战性。
我们的研究使我们开发了一种基于复杂网络的多元时间序列聚类新方法(BCNC)。BCNC包括一种将多变量时间序列映射到复杂网络的新方法和一种可视化多变量时间序列的新方法。该解决方案创新性地基于关系网络,并依赖于使用社区检测技术来实现完整的多元时间序列聚类。
给出了该BCNC方法的详细算法和仿真实验。在不同数据集上的实验结果表明,BCNC聚类法优于传统的多元时间序列聚类法。
Introduction
由医疗数据、工程数据和财务数据组成的数据集有一个共同的特征:它们通常由一段时间内收集的数据组成。这些时间轴排序的数据统称为时间序列数