文献记录(part43)--Multivariate time series clustering based on complex network

本文提出了一种基于复杂网络的多元时间序列聚类新方法BCNC,包括状态转换网络映射和社区检测技术。BCNC解决了高维性导致的信息丢失和聚类的复杂性问题,提高了聚类的准确性和MTS状态描述的质量。实验表明BCNC在不同数据集上优于传统方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

学习笔记,仅供参考,有错必纠

关键词:多元时间序列;数据挖掘;聚类分析;复杂网络


Multivariate time series clustering based on complex network


摘要


由于时间序列在各个领域的广泛存在,近年来时间序列数据挖掘(尤其是时间序列聚类)的研究日益增多。聚类等技术可以从时间序列数据中提取有价值的信息和潜在模式。在这方面,多元时间序列的聚类分析由于其高维数而具有挑战性。

我们的研究使我们开发了一种基于复杂网络的多元时间序列聚类新方法(BCNC)。BCNC包括一种将多变量时间序列映射到复杂网络的新方法和一种可视化多变量时间序列的新方法。该解决方案创新性地基于关系网络,并依赖于使用社区检测技术来实现完整的多元时间序列聚类。

给出了该BCNC方法的详细算法和仿真实验。在不同数据集上的实验结果表明,BCNC聚类法优于传统的多元时间序列聚类法。


Introduction


由医疗数据、工程数据和财务数据组成的数据集有一个共同的特征:它们通常由一段时间内收集的数据组成。这些时间轴排序的数据统称为时间序列数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GUI Research Group

谢谢支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值