一、问题描述
在二维平面上,给出三个点的坐标分别为A(ax,ay), B(bx,by), C(cx,cy),求点A到线段BC的最短距离。
注意:是点到线段距离,不是点到直线距离!!
二、问题分析
从点A向直线BC作垂线,垂足可能在线段BC的左侧,在线段BC上,或者在线段BC的右侧三种情况,下面分别讨论。
垂足在线段BC左侧
此时角ABC为钝角,满足:
AC * AC > AB * AB + BC * BC
最短距离显然是AB。
垂足在线段BC右侧
与左侧正好对称,有:
AB * AB > AC * AC + BC * BC
最短距离为AC。
垂直在线段BC上
最短距离是三角形ABC以边BC的高,可通过海伦公式先求出面积,再求出高得到答案。
三、代码实现
struct Point {
double x, y;
};
const