【深度学习框架学习| Keras Metrics详解2】Keras最简单的深度学习框架!你对Keras Metrics了解多少?来看看吧
【深度学习框架学习| Keras Metrics详解2】Keras最简单的深度学习框架!你对Keras Metrics了解多少?来看看吧
文章目录
- 【深度学习框架学习| Keras Metrics详解2】Keras最简单的深度学习框架!你对Keras Metrics了解多少?来看看吧
-
- Keras Metrics详解
- 5. Classification Metrics Based on True/False Positives & Negatives
- 6. Image Segmentation Metrics
- 7. Hinge Metrics for "Maximum-Margin" Classification
- 8. Metric Wrappers and Reduction Metrics
- 总结
- 2024健康大数据与智能医疗国际会议(ICHIH 2024)
- 第二届人工智能、系统与网络安全国际学术会议 (AISNS 2024)
- 第二届人工智能与自动化控制国际学术会议(AIAC 2024)
- 第四届信号处理与通信技术国际学术会议(SPCT 2024)
- [IEEE独立出版] 2024年智能通信、感知与电磁学术会议(ICSE 2024)
- 第五届神经网络、信息与通信工程国际学术会议(NNICE 2025)
- 第五届生物信息学与智能计算国际学术研讨会(BIC 2025)
欢迎宝子们点赞、关注、收藏!欢迎宝子们批评指正!
祝所有的硕博生都能遇到好的导师!好的审稿人!好的同门!顺利毕业!
大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文:
可访问艾思科蓝官网,浏览即将召开的学术会议列表。会议入口:https://ais.cn/u/EbMjMn
Keras Metrics详解
Keras的Metrics API提供了用于评估模型性能的多种度量标准(metrics)。
在深度学习训练过程中,度量标准用于跟踪和评估模型的训练效果,帮助我们了解模型是否在有效地学习,是否需要调整超参数或优化器。
Keras的Metrics API为各种任务(如分类、回归、图像分割等)提供了广泛的度量工具。
5. Classification Metrics Based on True/False Positives & Negatives
这类度量标准用于基于混淆矩阵中的四个元素(真阳性TP、假阳性FP、真阴性TN、假阴性FN)计算模型的性能。常见的分类度量标准有:
True Positives (TP)
:预测为正类且实际为正类的样本数量。False Positives (FP)
:预测为正类但实际为负类的样本数量。True Negatives (TN)
:预测为负类且实际为负类的样本数量。False Negatives (FN)
:预测为负类但实际为正类的样本数量。
常见的度量包括:
Precision
:精度,表示模型预测为正的样本中实际为正的比例,Precision = TP / (TP + FP)
。Recall
:召回率,表示实际为正的样本中被模型正确预测为正的比例,Recall = TP / (TP + FN)
。F1-Score
:F1分数,是精度和召回率的调和平均,F1 = 2 * (Precision * Recall) / (Precision + Recall)
。
from keras