【深度学习框架学习| Keras Metrics详解2】Keras最简单的深度学习框架!你对Keras Metrics了解多少?来看看吧

【深度学习框架学习| Keras Metrics详解2】Keras最简单的深度学习框架!你对Keras Metrics了解多少?来看看吧

【深度学习框架学习| Keras Metrics详解2】Keras最简单的深度学习框架!你对Keras Metrics了解多少?来看看吧



欢迎宝子们点赞、关注、收藏!欢迎宝子们批评指正!
祝所有的硕博生都能遇到好的导师!好的审稿人!好的同门!顺利毕业!

大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文:
可访问艾思科蓝官网,浏览即将召开的学术会议列表。会议入口:https://ais.cn/u/EbMjMn

Keras Metrics详解

Keras的Metrics API提供了用于评估模型性能的多种度量标准(metrics)。

在深度学习训练过程中,度量标准用于跟踪和评估模型的训练效果,帮助我们了解模型是否在有效地学习,是否需要调整超参数或优化器

Keras的Metrics API为各种任务(如分类、回归、图像分割等)提供了广泛的度量工具。

5. Classification Metrics Based on True/False Positives & Negatives

这类度量标准用于基于混淆矩阵中的四个元素(真阳性TP、假阳性FP、真阴性TN、假阴性FN)计算模型的性能。常见的分类度量标准有:

  • True Positives (TP):预测为正类且实际为正类的样本数量。
  • False Positives (FP):预测为正类但实际为负类的样本数量。
  • True Negatives (TN):预测为负类且实际为负类的样本数量。
  • False Negatives (FN):预测为负类但实际为正类的样本数量。

常见的度量包括:

  • Precision:精度,表示模型预测为正的样本中实际为正的比例,Precision = TP / (TP + FP)
  • Recall:召回率,表示实际为正的样本中被模型正确预测为正的比例,Recall = TP / (TP + FN)
  • F1-Score:F1分数,是精度和召回率的调和平均,F1 = 2 * (Precision * Recall) / (Precision + Recall)
from keras
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值