
人工智能
文章平均质量分 89
X.Cristiano
Talk is Cheap, Show me the Code!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
「AI Agent」≠「Agentic AI」!
本文探讨了AI Agent与Agentic AI的区别与发展。AI Agent是具备工具调用能力的独立智能体,能完成特定任务(如预订机票),但仍面临推理能力不足、幻觉等问题。而Agentic AI则是由多个AI Agent组成的协同系统,通过智能协调完成复杂目标(如智能家居管理),展现集体智能优势,但也带来错误放大、通信瓶颈等新挑战。两者代表了AI从"工具"到"组织"的演进,将推动下一代AI系统向更自主、协同的方向发展。原创 2025-07-14 11:32:19 · 894 阅读 · 0 评论 -
炸裂!Kimi K2「开源核弹」:代码王者+Agent 超脑,今日上线
月之暗面发布并开源万亿参数Kimi K2模型,采用MoE架构(激活参数32B),在代码、Agent和数学推理任务中达到开源模型SOTA水平。关键技术包括MuonClip优化器提升训练效率、大规模工具使用数据合成及通用强化学习机制。模型具备128K长上下文支持和兼容OpenAI的API接口(输入/输出tokens分别4元/16元每百万)。同步开源基础版和指令微调版,在风格化写作、知识推理等场景表现优异,未来将扩展视觉理解等能力。用户可通过官网或App体验,开发者可部署开源模型或调用API服务。原创 2025-07-12 11:09:10 · 1349 阅读 · 0 评论 -
轻松解锁 LLM 语言模型的奥秘
在当今人工智能领域,大型语言模型(LLM)的开发已经成为一个热门话题。这些模型通过学习大量的文本数据,能够生成自然语言文本,完成各种复杂的任务,如写作、翻译、问答等。本文将为你提供一个简单直接的方法,从下载数据到生成文本,带你一步步构建大院模型。原创 2025-04-28 20:00:41 · 626 阅读 · 0 评论 -
Kimi发布全新音频基础模型,霸榜十多项基准测试,勇夺性能桂冠
Kimi-Audio 是一款新发布的通用音频基础模型,支持语音识别、音频理解及语音对话等多种任务。该模型采用集成式架构,由音频分词器、音频大模型和音频去分词器三个核心组件构成,可高效处理多模态输入。在预训练阶段,使用了约 1300 万小时多样化的音频数据,并通过监督微调提升任务表现。经评估,在自动语音识别、音频理解、音频到文本聊天和语音对话等任务中均表现优异,总体性能排名第一。目前,该项目已开源,包含模型代码和评估工具包。原创 2025-04-27 14:42:03 · 422 阅读 · 0 评论 -
InternVL3技术报告
摘要:上海AI Lab联合商汤科技及国内多所顶尖高校发布了开源VLM——InternVL3。其核心创新是采用“原生多模态预训练”范式,在预训练阶段同时学习文本与多模态数据,有效整合信息,解决传统方法对齐难题。结合可变视觉位置编码、监督微调、混合偏好优化等技术,优化训练架构。实验表明,InternVL3-78B在MMMU基准测试上达72.2分,成为开源模型新标杆,媲美顶尖闭源模型,同时保持强大纯文本处理能力。原创 2025-04-17 10:14:56 · 1947 阅读 · 0 评论 -
大模型是如何“读懂”文字的?
比方说,我们在解释一个词的时候,会用很多其他词来解释它,而用来解释的这些词,又需要用另一些词来解释,如此往复,最后发现,词和词相互交织在一起才形成了每一个词的含义。用7168个数来表示每个词,就相当于把这些词嵌入到一个7168维的空间里,虽然我画不出来,也想象不出来,但7168维的空间在数学上确实存在。而如果「女王」这个词用2表示,就说明这两个词在某一个维度上是不同的,这个维度可能是「性别」,也可以是别的。「男人」这个词,在性别上和国王相同,都是1,但是地位和国王不同,记为1,所以男人是(1,1)。原创 2025-04-16 20:51:36 · 1120 阅读 · 1 评论 -
漫画趣说:大模型的“成长之路”——预训练、后训练、微调
预训练就是用大量的通用数据集先训练模型,让它掌握基础知识和技能(通用语言能力和世界常识,比如刚发布的Llama 4在200种语言上进行预训练)。后训练是指在预训练完成后的进一步训练阶段,目的在于让模型更好地适应实际的特定任务或应用场景。微调是针对特定任务(修电脑)的训练,数据量小但很精准、具体,老司机会把他的具体修理经验交给你,让你的知识更接地气。原创 2025-04-08 15:40:07 · 579 阅读 · 0 评论 -
全景解读 LLM Posting-Train(后训练)技术
后训练技术的核心价值体现在三个维度:知识精炼:修正预训练阶段的知识偏差与事实错误能力对齐:使模型输出符合人类价值观和任务需求推理增强:赋予模型多步推理、逻辑验证等高级认知能力原创 2025-03-27 08:59:31 · 1455 阅读 · 0 评论 -
DeepSeek-V3深夜惊爆上新!
685B的DeepSeek-V3新版本,就在昨夜悄悄上线了。参数量685B的V3,代码数学推理再次显著提升,甚至代码追平Claude 3.7,网友们实测后大呼强到离谱!有人预测说,按照此前的节奏,DeepSeek-R2大概率几周内就将上线。原创 2025-03-25 09:06:37 · 766 阅读 · 0 评论 -
仅靠prompt,Agent难以自救
真正的 LLM 智能体,则是通过「强化学习(RL)与推理(Reasoning)的结合」来实现。文章举例了 OpenAI 的 DeepResearch 和 Anthropic 的 Claude Sonnet 3.7,说明未来智能体会自主掌控任务执行的全过程,包括动态规划搜索策略、主动调整工具使用等,而不再依靠外部提示或工作流驱动。这种转变意味着智能体设计的核心复杂性将转移到模型训练阶段,从根本上提升模型的自主推理能力,最终彻底颠覆目前的应用层生态。原创 2025-03-23 23:14:47 · 880 阅读 · 0 评论 -
独具匠心:GRPO极简改进方案揭秘
分析表明,DeepSeek-V3-Base 已经展现出「顿悟时刻」,而 Qwen2.5 基础模型即使没有提示模板也表现出强大的推理能力,这表明存在潜在的预训练偏差。此外,作者还在群体相对策略优化(GRPO)中发现了优化偏差,它在训练期间人为地增加了响应长度(尤其是对于错误输出)。为解决这个问题,研究人员引入了 Dr. GRPO,这是一种无偏优化方法,可在保持推理性能的同时提高 token 效率。利用这些见解,作者提出了一种简化的 R1-Zero 方案,使用 7B 基础模型在 AIME 2024 上实原创 2025-03-23 11:18:50 · 796 阅读 · 0 评论