
Agent
文章平均质量分 92
X.Cristiano
Talk is Cheap, Show me the Code!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Agent实战教程:LangGraph相关概念介绍以及快速入门
文章摘要:作者介绍了使用LangGraph框架搭建智能体(Agent)的经验,重点讲解了Langchain的ChatModel调用方式和ReAct框架。ChatModel部分展示了如何通过Langchain调用不同厂商的大模型,并以DeepSeek为例详细解析了模型返回的JSON结构。ReAct框架部分阐述了该框架如何结合推理和行动来提升语言模型性能,包括任务定义、推理轨迹生成、行动执行等步骤。文章还提供了相关官方文档链接,适合对智能体开发感兴趣的读者参考。原创 2025-08-25 20:24:30 · 683 阅读 · 0 评论 -
LangChain 入门:手把手教你搭建第一个 AI Agent
基于LangChain框架开发AI Agent的核心功能与实践案例。文章首先阐述了Agent开发的三大关键能力:大模型接入、工具决策和任务管理,并对比了主流开源框架LangChain、AutoGen和Google ADK的特点。 重点分析了LangChain框架对Agent核心能力的支持:1)丰富的工具库支持多模型和数据源接入;2)嵌入预筛选+LLM决策的智能工具选择机制;3)ReAct循环实现的任务管理能力。通过一个自然语言查询SQLite数据库的实践案例,展示了如何构建具备智能推理、工具协作...原创 2025-07-21 10:10:58 · 973 阅读 · 0 评论 -
「AI Agent」≠「Agentic AI」!
本文探讨了AI Agent与Agentic AI的区别与发展。AI Agent是具备工具调用能力的独立智能体,能完成特定任务(如预订机票),但仍面临推理能力不足、幻觉等问题。而Agentic AI则是由多个AI Agent组成的协同系统,通过智能协调完成复杂目标(如智能家居管理),展现集体智能优势,但也带来错误放大、通信瓶颈等新挑战。两者代表了AI从"工具"到"组织"的演进,将推动下一代AI系统向更自主、协同的方向发展。原创 2025-07-14 11:32:19 · 894 阅读 · 0 评论 -
通义WebSailor开源Agent多榜夺魁,向OpenAI BrowseComp高难度基准发起挑战
阿里巴巴通义实验室 RAG 团队推出了最新研究成果 WebSailor。WebSailor 带来了完整的后训练方案来弥补这一差距,使开源模型在超复杂的信息检索任务上实现突破。通过创新的数据构造和训练方法,WebSailor 成功赋予开源 Web Agent 以超人类推理能力,在 BrowseComp 等长期未解的挑战上取得了前所未有的成绩,大幅度缩小了开源模型与顶级封闭系统之间的差距。原创 2025-07-08 10:57:49 · 1049 阅读 · 0 评论 -
GitHub 5.4k+ Star项目爆火,构建生产级Agent的12个秘密武器
资深AI工程师Dex在GitHub发布5.3k+星标技术文档《12-Factor Agents》,揭示从AI原型到生产级产品的关键洞见。通过分析主流Agent框架(LangChain/LangGraph/CrewAI等)和YC创业公司的实际案例,Dex发现: 成功AI产品往往采用务实模块化方法,而非依赖现有框架 原型阶段可达80%效果,但最后20%需深度定制甚至重构 类比《12-Factor Apps》方法论,提出12条生产级AI应用原则。原创 2025-07-06 22:50:30 · 1278 阅读 · 0 评论 -
11大顶级AI Agent框架全览
本文介绍了11个适用于软件开发者的最佳AI智能体框架,帮助构建能够自主推理、规划和执行复杂任务的智能系统。重点分析了三个主流框架:LangChain以其模块化设计支持多模型集成;微软的AutoGen专注于多智能体协作;CrewAI则擅长模拟真实团队协作。各框架在灵活性、易用性和应用场景上各有侧重,开发者需根据项目复杂度、编程能力等需求选择合适方案。文中还提供了各框架的代码示例,展示其核心功能实现方式。原创 2025-07-02 10:18:55 · 1308 阅读 · 0 评论 -
能办成事的Agent:实时交互与经验学习
Agent模型是人工智能领域中的一个概念,指的是具有自主性、反应性、主动性和社交能力等特性的计算实体。这种实体能够使用传感器感知周围环境,做出决策,然后使用执行器采取行动。原创 2025-06-26 22:49:30 · 813 阅读 · 0 评论 -
AI自动化神器n8n,保姆级教程带你玩转高效流程
n8n 是 nodemation 的简称,是一个开源的、高度可扩展的工作流自动化工具。GitHub 仓库为 https://github.com/n8n-io/n8n ,当前 Star 数已经达到 108K。它允许你通过一个直观的可视化界面,将不同的应用、服务和数据连接起来,创建复杂的自动化流程,从而提升效率、减少重复性工作。原创 2025-06-26 15:51:55 · 1354 阅读 · 0 评论 -
Langchain入门指南:一次讲清基本用法
本文介绍了LangChain的基础语法,重点讲解了ChatModel、PromptTemplate和OutputParser的使用方法。主要内容包括:1)如何加载LLM模型并调用;2)RunnableSequence的概念及其invoke、batch等通用接口;3)Message消息类型及其四种角色分类;4)PromptTemplate模板的使用和初始化方式。文章还提供了官方文档参考和开发环境配置建议,强调这些基础组件是构建Agent系统的基本单元。通过简单示例展示了从模型调用到模板拼接的完整流程。原创 2025-06-17 20:04:44 · 838 阅读 · 0 评论 -
Agent技术解析:与传统应用的差异与优势
Agent可以理解为一种具有自主性、社会性、反应性和主动性的人工智能实体。它能够感知环境信息,并根据预设的目标和规则,自主地做出决策和行动。Agent既可以是软件形式存在,如智能助手、聊天机器人等;也可以与硬件结合,应用于机器人、智能家居等领域。例如,智能客服Agent能够自动识别客户问题并提供精准解答;智能家居Agent可以根据环境光线、温度等条件自动调节家电设备。原创 2025-03-27 18:07:53 · 886 阅读 · 0 评论 -
实战指南:从零开始搭建AI智能体
智能体(Agents)是一种能够感知环境、做出决策并采取行动来实现特定目标的自主实体。智能体的复杂程度各不相同,从简单的响应式智能体(对刺激直接做出反应)到更高级的智能体(能够学习和适应)都有。原创 2025-04-13 22:32:32 · 1527 阅读 · 0 评论 -
华为天才少年李博杰打造“办成事”智能体:动态交互+经验进化,让AI真正解决问题
目前大部分 AI Agent 主要执行批处理任务,难以实现真正实时交互。其面临两大核心挑战:一是实时交互延迟高;二是难以从经验中学习。Agent 的能力依赖基础模型和静态知识,无法根据任务成败积累经验,导致每次任务执行方式可能不同,无法提升熟练度。关键在于让 Agent 能从经验中学习,越用越熟练,从而在语音和电脑操作等任务中达到真人级响应速度,并积累成功与失败经验,提升技能熟练度。原创 2025-06-15 22:24:13 · 1076 阅读 · 0 评论 -
目前流行Agent框架对比表
Agent框架对比原创 2025-06-13 18:24:42 · 1042 阅读 · 0 评论 -
行业洞察:多工具任务调度中MCP与Agent + Function call路径的选择
本文系统探讨了大语言模型(LLMs)应用中两种主流外部资源接入方案:MCP标准化协议和Agent+Function Call动态调度机制。MCP通过统一接口标准简化了工具与数据源的集成,采用轻量级服务器架构支持各类数据源接入。Agent+Function Call则通过结构化函数调用实现动态工具调度,增强模型实时交互能力。两种方案各有优势,MCP更适合标准化系统集成,而Agent模式更适用于灵活的多轮交互场景。文章还通过具体代码示例展示了Function Call的实现流程,为开发者提供了实用参考。原创 2025-06-07 07:30:00 · 1064 阅读 · 0 评论 -
从零开始:深入构建 Agent 的 Function Call 实现
本文将介绍如何从零开始构建一个能够调用函数的Agent,而无需使用LangChain等现成框架。该Agent的目标是回答关于天气的问题,其核心流程包括思考、行动和响应三个阶段。首先,用户提出问题后,模型会分析问题并决定是否需要调用函数。接着,如果涉及天气问题,模型会调用相应的天气获取函数,并将结果整理后返回给用户。本文详细说明了如何定义天气获取函数和发送信息的方法,并通过示例代码展示了如何实现这一流程。原创 2025-05-10 16:18:48 · 998 阅读 · 0 评论 -
深度剖析:MCP Server、Function Call与Agent的本质差异
本文深入解析了MCP Server、Function Call和Agent在AI大模型技术中的角色与差异。MCP Server是被动的“工具箱”,提供数据和工具接口,适合复杂任务的数据供给;Function Call是“瑞士军刀”,直接嵌入模型处理轻量级任务;Agent是“智能工人”,具备自主决策能力,可调用工具完成复杂任务。三者在功能、交互方式和应用场景上各有侧重,开发者需根据任务复杂度、部署灵活性和协议标准化需求进行选择。通过合理搭配,可构建高效灵活的AI系统,释放大模型潜力。原创 2025-04-11 18:51:56 · 1036 阅读 · 0 评论 -
台大李宏毅2025 AI Agent新课
AI agent的意思是说,人类不提供明确的行为或步骤的指示,人类只给AI目标,至于怎么达成目标,AI要自己想办法。比如,你给AI某一个研究的议题,那你期待一个AI agent就应该能够自己提出假设,设计实验,进行实验,分析结果。如果分析出来的结果跟假设不符合,要回头去修正假设。原创 2025-04-04 23:20:46 · 488 阅读 · 0 评论 -
仅靠prompt,Agent难以自救
真正的 LLM 智能体,则是通过「强化学习(RL)与推理(Reasoning)的结合」来实现。文章举例了 OpenAI 的 DeepResearch 和 Anthropic 的 Claude Sonnet 3.7,说明未来智能体会自主掌控任务执行的全过程,包括动态规划搜索策略、主动调整工具使用等,而不再依靠外部提示或工作流驱动。这种转变意味着智能体设计的核心复杂性将转移到模型训练阶段,从根本上提升模型的自主推理能力,最终彻底颠覆目前的应用层生态。原创 2025-03-23 23:14:47 · 880 阅读 · 0 评论