条带式 SAR 回波数据的特性直接决定了成像处理的复杂度和最终图像质量,在信号处理中被定义为 “二维 SAR 相位历程”,这一概念揭示了其本质是快时间域与慢时间域交织的复基带数据组。其中,快时间对应雷达发射脉冲与回波接收之间的时间间隔,主要反映目标的距离信息;慢时间则对应雷达平台的运动时间,主要反映目标的横向(方位向)位置信息。这种 “距离 - 方位” 二维特性,使得条带式 SAR 的回波数据天然具备时空耦合的复杂结构。从物理过程来看,回波数据的形成源于雷达与目标之间的相对运动:随着载机沿航线移动,雷达在不同慢时间位置发射脉冲,接收目标反射的回波信号,这些信号携带了目标距离、散射特性等信息,并因雷达位置变化产生额外的相位调制。这种调制与目标固有散射特性的叠加,构成了二维相位历程的复杂结构。
条带式 SAR 的回波数据具有多项显著特征,这些特征既源于雷达系统的工作原理,也与目标和平台的相对运动密切相关,其中最关键的包括距离弯曲、快时间切片一致性、横向信号调制等。
(1)距离弯曲
在单个散射点的二维回波响应图中,距离弯曲是最易观察到的特征。这一现象源于目标到雷达的斜距随慢时间(雷达位置)的非线性变化:当雷达沿航线移动时,目标与雷达的相对位置呈曲线关系,导致回波信号在快时间 - 慢时间平面上形成弯曲轨迹。距离弯曲的程度与合成孔径长度()和目标距离(
)相关,公式为:
| (1) |
如图1所示,其中,
为载机速度,
为合成孔径时间。距离弯曲是 SAR 回波的固有几何畸变,当目标距离增加时,距离弯曲程度会按
的尺度减小;但若为保证均匀横向分辨率而使合成孔径时间随距离成比例增加,则距离弯曲会随距离增大而加剧。这种特性使得不同距离的目标回波在数据中呈现差异化的弯曲形态,给后续成像处理带挑战。
图1
(2)快时间切片
快时间域的切片(即固定慢时间位置的回波信号)具有鲜明特性:所有切片均为发射 LFM 信号的延迟回波,其幅度变化规律与发射脉冲的线性调频特性一致,但信号的起始时间和初始相位存在差异。这种一致性源于发射信号的稳定性,而差异则由不同慢时间位置对应的斜距不同所致 —— 雷达位置变化导致回波传播时间改变,进而使信号起始时间偏移,同时斜距变化也会引入额外的相位差。
(3)横向切片
横向切片(即固定快时间位置的回波信号)则揭示了方位向的信号特性。完整的横向切片实部呈现 “中间强、边缘弱” 的幅度分布,这是由于天线方向图的方向性所致 —— 当散射点位于天线主波束边缘时,接收信号的幅度会显著衰减。而对切片中间部分放大后可发现,信号呈现线性调频特征,这是雷达运动引入的相位调制结果:载机移动导致目标相对于雷达的多普勒频率随慢时间线性变化,形成方位向的 LFM 信号(条带式SAR的数据特性(一)-几何关系与空间带宽-CSDN博客),且在目标正侧方()处多普勒频率为零。这种二维 LFM 信号特性是条带式SAR成像的核心依据——通过对距离向和方位向的调频信号分别进行脉冲压缩处理,可实现高分辨率成像。
条带式 SAR 的回波数据量通常具有庞大的规模,其大小由快时间采样数和慢时间采样数共同决定,而这两个参数又与雷达系统参数和成像需求直接相关。
(1)快时间采样数
快时间采样数的计算公式可表示为:
| (2) |
其中,为场景宽度,
为距离分辨率,
为发射信号带宽,
为脉冲时宽。该公式的物理意义是:采样数需同时覆盖整个场景(
项)和单个脉冲的时间带宽积(
项)。当快时间采样率等于信号带宽时,上式成立;若采用过采样以避免频谱混叠,
会相应增加。
(2)慢时间采样数
慢时间采样数等于合成孔径时间内的发射脉冲数,计算公式为:
| (3) |
其中,为合成孔径时间,
为脉冲重复频率,
为场景距离,
为天线方位波束宽度,
为横向分辨率。该式表明,慢时间采样数本质上是天线波束横向覆盖范围内的分辨单元总数。同样,若方位向采用过采样,
会增大。