GMM-HMM在语音识别中的应用

本文探讨了GMM-HMM在语音识别中的应用,详细介绍了高斯混合模型(GMM)和隐马尔可夫模型(HMM)的基本概念、假设以及HMM的三个基本问题。通过GMM解决高斯混合分布问题,结合HMM进行语音信号的分类,以此实现语音识别。同时,提供了视频讲解资源和相关代码获取方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.语音识别系统的基本结构

这里写图片描述

2.涉及算法

这里写图片描述

3.GMM高斯混合模型

3.1高斯混合模型的基本概念

  高斯混合模型是指具有如下形式的概率分布模型:

p(yθ)=k=1kαkϕ(yθk)

其中, αk 是系数, αk0 kk=1αk=1 ϕ(yθk) 是高斯分布密度, θk=(μk,σ2k)
ϕ(yθk)=12πσkexp((yμk)22θ2k)

称为第 k 个分模型。
  将二变量的混合高斯分布可以推广到多变量的多元混合高斯分布,其联合概率密度函数可写为:
p(x)=k=1Mcm(2π)(D/2)|m|1/2exp[12</
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值