测试一个SLAM的算法性能,需要测试SLAM算法定位精度、时间开销,内存开销等等。而时间开销和内存开销一般比较好操作,但是定位精度一般很难评估,因为你需要真实轨迹,但是这个很难获取,需要一些比较昂贵的设备,因此,一些实验室专门做了公开数据集和评估工具,可以通过这些公开数据集和评估工具对比一些论文上的数据来评估自己改进的SLAM的性能优劣。
评估工具
- Trajectory Evaluation with Alignment [Paper], [Code]
- Python package for the evaluation of odometry and SLAM [Code]
- SLAMBench2.0: SLAM performance evaluation framework [Code]
- 还有Openvins、ORBSLAM3开源工程中有自带的评估工具。
汽车
- Complex Urban Dataset
- Multi Vehicle Stereo Event Camera Dataset
- KAIST Day/Night Dataset
- Multi-modal Panoramic 3D Outdoor Dataset (MPO)
- Oxford Robotcar Dataset
- CityScapes Dataset
- CCSAD (Stereo Urban) Dattaset
- Málaga Stereo and Laser Urban Data Set
- KITTI Vision Benchmark Suite
- Day and Night with Lateral Pose Change Dataset
- Alderley Day/Night Dataset
- San Francisco Landmark Dataset
- Ford Campus Vision and Lidar Dataset
- St Lucia Stereo Vehicular Dataset
- St Lucia Multiple Times of Day
- MIT DARPA Urban Challenge Dataset
- FABMAP Dataset
移动机器人
- Rosario Dataset
- Sugar Beets 2016, Agricultural Robot Dataset
- Chilean Underground Mine Dataset
- Katwijk Beach Planetary Rover Dataset
- Robot @ Home Dataset
- University of Michigan North Campus Long-Term (NCLT) Vision and LIDAR Dataset
- Rawseeds In/Outdoor Dataset
- Canadian Planetary Emulation Terrain 3D Mapping Dataset
- Devon Island Rover Navigation Dataset
- Multi-Robot Cooperative Localization and Mapping Dataset
- Multi-Sensor Perception (Marulan) Dataset
- TUM RGB-D SLAM Dataset and Benchmark
- New College Vision and Laser Data Set
无人机
- Zurich Urban Micro Aerial Vehicle Dataset
- Event-Camera Dataset and Simulator
- Solar-powered UAV Sensing and Mapping Dataset
- EuRoC MAV Dataset
- Kagaru Airborne Stereo Dataset Dataset
水下自主航行器
Underwater robots include ROV for simplicity
水面无人艇
Water surface vehicle such as canoe and boat
手持设备
- Collaborative SLAM Dataset (CSD)
- SceneNet RBG-D Dataset
- Event-Camera Dataset and Simulator
- Comprehensive RGB-D Benchmark (CoRBS)
- Augmented ICL-NUIM Reconstruction Dataset
- ICL-NUIM RGBD Dataset
- Challenging data sets for point cloud registration algorithms
- Cosy Localization Database (COLD)
- ADVIO Dataset
- Deep Inertial Odometry Dataset
- InteriorNet
- Stereo Plenoptic Dataset
- TUM-Visual-Inertial
- ZJU - SenseTime VISLAM