UNet&&VNet

本文探讨了UNet与VNet在医学图像处理领域的应用,UNet通过4次下采样和上采样,利用skip connection增强特征传递;VNet则引入残差连接,采用same卷积替代池化,提升模型性能。两者均实施弹性形变数据增强,以适应不同尺度的特征。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Unet论文地址:https://arxiv.org/abs/1505.04597
Vnet论文地址:http://campar.in.tum.de/pub/milletari2016Vnet/milletari2016Vnet.pdf
在这里插入图片描述
UNet被广泛应用于医学图像处理,encoder下采样4次,一共下采样16倍,对称地,其decoder也相应上采样4次,将encoder得到的高级语义特征图恢复到原图片的分辨率。UNet共进行了4次上采样,并在同一个stage使用了skip connection。
论文中一个点是对数据进行弹性形变操作,弹性形变使得输入网络的图片大小需要受到感受野的影响。

在这里插入图片描述
在这里插入图片描述
可以看出VNet相对3DUNet作了一些改进:
引入残差,水平向的残差连接采用element-wise,卷积代替池化,same卷积。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值