读自动驾驶激光雷达物体检测技术(Lidar Obstacle Detection)(3):Segmentation

本文深入探讨了自动驾驶中激光雷达物体检测的Segmentation技术,包括基于粒子分割和Manual RANSAC方法。文章详细介绍了SegmentPlane和SeparateClouds函数,以及RANSAC算法的工作原理和应用,旨在将道路点与物体点有效区分。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Segmentation的任务是将属于道路的点和属于场景的点分开,在该分割部分作者工使用了两种方法:

第一种:

下图中的12分别是第一种程序保存的点云结果。

下面是保存的点云的可视化结果:

obstCloud可视化结果
planeCloud可视
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Upupup6

写手不易请留下你的打赏鼓励谢谢

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值