PCA(3):PCA实现C++代码

本文介绍了PCA(主成分分析)的实现流程,包括数据的零均值化、协方差矩阵的计算、特征值和特征向量的求解,以及如何通过特征向量进行数据降维。协方差矩阵的性质包括对称性、对角线上是各维度方差,以及反映维度间的相关性。PCA用于降低数据的复杂性,通过选取特征值最大的几个特征向量来降维。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基础知识:https://blog.csdn.net/m0_37957160/article/details/107063223

https://mp.csdn.net/editor/html/107108718

PS:

先看一下PCA算法实现流程:(设有m条n维数据,意思就是有m个样本,每个样本有n维特征)

(1)将原始数据组成一个m行n列的矩阵X。

(2)将X的每一列(代表一个属性字段),进行零均值化处理,即减去这一列的均值。

(3)求出协方差矩阵。

(4)求出协方差矩阵的特征值及对应的特征向量。

(5)将特征向量按对应特征值大小,从上到下按行排列成矩阵,取前k行组成矩阵P。

(6)Y=PX即为降维到k维后的数据。(意思就是将原始数据旋转到特征矩阵P所在的空间中,得到的数据Y即为降维后的结果)

----------------协方差矩阵--------

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Upupup6

写手不易请留下你的打赏鼓励谢谢

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值