https://mp.csdn.net/editor/html/107108718
PS:
先看一下PCA算法实现流程:(设有m条n维数据,意思就是有m个样本,每个样本有n维特征)
(1)将原始数据组成一个m行n列的矩阵X。
(2)将X的每一列(代表一个属性字段),进行零均值化处理,即减去这一列的均值。
(3)求出协方差矩阵。
(4)求出协方差矩阵的特征值及对应的特征向量。
(5)将特征向量按对应特征值大小,从上到下按行排列成矩阵,取前k行组成矩阵P。
(6)Y=PX即为降维到k维后的数据。(意思就是将原始数据旋转到特征矩阵P所在的空间中,得到的数据Y即为降维后的结果)
----------------协方差矩阵--------