【强化学习笔记】策略梯度(Policy Gradient)

本文介绍了强化学习的基本元素,包括智能体、环境和奖励函数。智能体依据策略对环境做出动作,并根据环境反馈的奖励进行学习。文章详细阐述了回合、总奖励、轨迹、奖励期望等核心概念,并探讨了如何通过梯度下降方法求解奖励期望最大值。强化学习的目标是调整智能体的策略,以在特定环境中获得最大累计奖励。

1.基本元素

  • 智能体(Agent/Actor,后面统一用Agent表示),相当于人;智能体内部有一个用于决策的策略(Policy),相当于人做一件事情的策略(或“方案”)。
  • 环境(Environment)
  • 奖励函数(Reward Function)

由于 EnvironmentReward Function 在游戏开始之前就已经确定好了,所以唯一能做的就是通过调整 Agent(实际是调整内部的 Policy ),得到最大奖励

Agent 中的 Policy 相当于一个函数 A c t i o n = π θ ( O b s e r v a t i o n ) Action = π_\theta(Observation) Action=πθ(Observation) 。输入是观察的内容,输出是要做出的动作。由于这个函数是未知的,所以参数用 θ \theta θ 表示。 以人下棋为例,Agent相当于是下棋的人,Policy是人下棋的套路(或者说是下棋的策略),Policy相当于一个函数,输入的当前棋的局势,输出是落子的位置。

2.游戏示例

游戏开始图:

游戏结束图:

游戏过程:

  • 首先,Agent观察到游戏当前的状态(Observation)为 s 1 s_1 s1,Agent做出了动作(Action) a 1 a_1 a1,得到了奖励(Reward) r 1 r_1 r1。此时,由于游戏的状态从 s 1 s_1 s1变成了 s 2 s_2 s2
  • 然后,Agent观察到游戏当前的状态(Observation)为 s 2 s_2 s2,Agent做出了动作(Action) a 2 a_2 a2,得到了奖励(Reward) r 2 r_2 r2。此时,由于游戏的状态从 s 2 s_2 s2变成了 s 3 s_3 s3
  • ……
  • 游戏走了 T T T 步以后,游戏结束。

注意事项:
问: Observation和State含义是否相同?
答: 是相同的。Observation是从Agent的角度出发,讲Agent观察(Observation)到环境的内容;而State是从环境的角度出发,讲环境自身的状态(State)。本质是相同的,描述的是同一个东西,只是观察的角度不同而已

3.基本概念

3.1.回合(episode)

从游戏开始到游戏结束,一局游戏称为一个回合(episode)

3.2.总奖励(Total Reward)

总奖励(Total Reward, R)是指:一局游戏从开始到结束累积的奖励,即: R = r 1 + r 2 + … + r T = ∑ t = 1 T r t R = r_1 + r_2 + … + r_T = \sum\limits_{t=1}^T r_{t} R=r1+r2++rT=t=1Trt (第一步得到的奖励 r 1 r_1 r1 + 第二步得到的奖励 r 2 r_2 r2 + …… + 第T步得到的奖励 r T r_T rT。)

3.3.轨迹(Trajectory)

定义:
在一局游戏中,把Agent观察到的状态 s s s 、Agent采取的动作 a a a 串联起来,组成一个集合,该集合称为轨迹(Trajectory),即: T r a j e c t o r y   τ = { s 1 , a 1 , s 2 , a 2 , … , s T , a T } Trajectory \space \tau = \{s_1, a_1, s_2, a_2,…, s_T, a_T \} Trajectory τ={s1,a1,s2,a2,,sT,aT}。一局游戏对应了一个 τ \tau τ ,玩了 N N N 局游戏就能得到 N N N τ \tau τ

某条轨迹发生的概率:
玩了 N N N 局游戏以后,我们可以得到 N N N τ \tau τ,我们可以试图计算某条轨迹 τ \tau τ 出现的概率。我们用 p θ ( τ ) p_\theta(\tau) pθ(τ) 表示某个轨迹 τ \tau τ 出现的概率。

公式:
p θ ( τ ) = p ( s 1 ) ⋅ p θ ( a 1 ∣ s 1 ) ⋅ p ( s 2 ∣ s 1 , a 1 ) ⋅ p θ ( a 2 ∣ s 2 ) ⋅ p ( s 3 ∣ s 2 , a 2 ) … ⋅ p ( s T + 1 ∣ s T , a T ) p_\theta(\tau) =p(s_1) \cdot p_\theta(a_1|s_1) \cdot p(s_2 | s_1, a_1) \cdot p_\theta(a_2 | s_2) \cdot p(s_3 | s_2, a_2)…\cdot p(s_{T+1} | s_T, a_T) pθ(τ)=p(s1)pθ(a1s1)p(s2s1,a1)pθ(a2s2)p(s3s2,a2)p(sT+1sT,aT)

公式解读:

  • p ( s 1 ) p(s_1) p(s1) 是指:游戏环境出现状态 s 1 s_1 s1的概率。这个概率由游戏控制的,我们无法得知也无法学习。

  • p θ ( a 1 ∣ s 1 ) p_\theta(a_1|s_1) pθ(a1s1) 是指:当Agent观察到环境状态为 s 1 s_1 s1时,做出动作 a 1 a_1 a1的概率,这部分是Agent自身可以控制的。换句话说,优秀的Agent知道当观察到环境状态为 s 1 s_1 s1时,采取什么样的动作action得到的奖励 r 1 r_1 r1最大。如何决策,是可以学习的。我们要学习的就是参数 θ \theta θ

  • p ( s 2 ∣ s 1 , a 1 ) p(s_2 | s_1, a_1) p(s2s1,a1) 是指:在状态 s 1 s_1 s1下,Agent采取了 a 1 a_1 a1的动作后,环境跳转到状态 s 2 s_2 s2的概率。这个概率由游戏控制的,我们无法得知也无法学习。

  • p θ ( a 2 ∣ s 2 ) p_\theta(a_2 | s_2) pθ(a2s2) 是指:当Agent观察到环境状态为 s 2 s_2 s2时,做出动作 a 2 a_2 a2的概率,这部分是Agent自身可以控制的。如何决策,是可以学习的。我们要学习的就是参数 θ \theta θ

公式推导:

p θ ( τ ) = p ( s 1 ) ⋅ p θ ( a 1 ∣ s 1 ) ⋅ p ( s 2 ∣ s 1 , a 1 ) ⋅ p θ ( a 2 ∣ s 2 ) ⋅ p ( s 3 ∣ s 2 , a 2 ) ⋯ p ( s T + 1 ∣ s T , a T ) = p ( s 1 ) ⋅ [ p θ ( a 1 ∣ s 1 ) ⋅ p θ ( a 2 ∣ s 2 ) ⋯ p θ ( a T ∣ s T ) ] ⋅ [ p ( s 2 ∣ s 1 , a 1 ) ⋅ p ( s 3 ∣ s 2 , a 2 ) ⋯ p ( s T + 1 ∣ s T , a T ) ] = p ( s 1 ) ⋅ ∏ t = 1 T p θ ( a t ∣ s t ) ⋅ ∏ t = 1 T p ( s t + 1 ∣ s t , a t ) = p ( s 1 ) ⋅ ∏ t = 1 T p θ ( a t ∣ s t ) ⋅ p ( s t + 1 ∣ s t , a t ) \begin{aligned} p_\theta(\tau) &= p(s_1) \cdot p_\theta(a_1|s_1) \cdot p(s_2 | s_1, a_1) \cdot p_\theta(a_2 | s_2) \cdot p(s_3 | s_2, a_2) \cdots p(s_{T+1} | s_T, a_T) \\ &= p(s_1) \cdot [p_\theta(a_1|s_1) \cdot p_\theta(a_2|s_2) \cdots p_\theta(a_T|s_T)]\cdot[p(s_2 | s_1, a_1) \cdot p(s_3 | s_2, a_2) \cdots p(s_{T+1} | s_T, a_T)] \\ &=p(s_1) \cdot \prod\limits_{t=1}^T p_\theta(a_t|s_t) \cdot \prod\limits_{t=1}^T p(s_{t+1}|s_t, a_t) \\ &=p(s_1) \cdot \prod\limits_{t=1}^T p_\theta(a_t|s_t) \cdot p(s_{t+1}|s_t, a_t) \end{aligned} pθ(τ)=p(s1)pθ(a1s1)p(s2s1,a1)pθ(a2s2)p(s3s2,a2)p(sT+1sT,aT)=p(s1)[pθ(a1s1)pθ(a2s2)pθ(aTsT)][p(s2s1,a1)p(s3s2,a2)p(sT+1sT,aT)]=p(s1)t=1Tpθ(atst)t=1Tp(st+1st,at)=p(s1)t=1Tpθ(atst)p(st+1st,at)

其中:

  • p ( s 1 ) p(s_1) p(s1) p ( s t + 1 ∣ s t , a t ) p(s_{t+1}|s_t, a_t) p(st+1st,at)是游戏环境的参数,与Agent无关,Agent不能控制。
  • p θ ( a t ∣ s t ) p_\theta(a_t|s_t) pθ(atst)是在 s t s_t st状态下采取行动 a t a_t at的概率,是Agent可以控制的,通过学习可以得到 p θ ( a t ∣ s t ) p_\theta(a_t|s_t) pθ(atst)的概率。同时根据学习可以知道面对环境状态 s t s_t st时,采取哪个 a t a_t at得到的奖励多,那我们就可以增加这个 a t a_t at的概率。

3.4.奖励期望(Expected Reward)

通过不断地玩游戏,可以获得游戏的奖励期望(Expected Reward),用 R ‾ θ {\overline{R}_\theta} Rθ 表示 。
奖励期望可以理解成:玩游戏获得的平均奖励。玩了N局游戏,得到了N条轨迹。根据全概率公式,计算每条轨迹出现的概率以及对应的奖励,可以获得奖励期望。

R ‾ θ = ∑ τ R ( τ ) ⋅ p θ ( τ ) = E τ ∼ p θ ( τ ) [ R ( τ ) ] {\overline{R}_\theta} = \sum\limits_{\tau} R(\tau) \cdot p_\theta(\tau) = E_{\tau \sim p_{\theta}(\tau)}[R(\tau)] Rθ=τR(τ)pθ(τ)=Eτpθ(τ)[R(τ)]

R ( τ ) R(\tau) R(τ) :指的是某条轨迹对应的总的奖励值

p θ ( τ ) p_\theta(\tau) pθ(τ):指的是某条轨迹出现的概率

对应关系:
1 1 1 个奖励期望对应了 N N N 条游戏轨迹 τ \tau τ
1 1 1 条游戏轨迹 τ \tau τ 对应了游戏的 T T T 步(骤)。

3.5.求奖励期望最大值

我们的目标是想知道模型Agent什么时候可以得到最大的奖励期望值 R ‾ θ {\overline{R}_\theta} Rθ。但模型是带有参数 θ \theta θ 的,我们需要通过解方程知道当参数 θ \theta θ 值为多少时,可以获得最大的奖励期望值。(知道 θ \theta θ 的取值,模型就是已知模型了。)在此,我们利用梯度下降的方法进行 θ \theta θ 的求解。

梯度下降法更新公式: θ = θ + η ⋅ ∇ R ‾ θ \theta = \theta + \eta \cdot \nabla{\overline{R}_\theta} θ=θ+ηRθ
其中, η \eta η 是学习率,是人为设置的。 ∇ R ‾ θ \nabla{\overline{R}_\theta} Rθ 是对 R ‾ θ {\overline{R}_\theta} Rθ 的梯度值,因此需要先对 R ‾ θ {\overline{R}_\theta} Rθ 求梯度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

北下关吴中生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值