文章目录
1.基本元素

- 智能体(Agent/Actor,后面统一用Agent表示),相当于人;智能体内部有一个用于决策的策略(Policy),相当于人做一件事情的策略(或“方案”)。
- 环境(Environment)
- 奖励函数(Reward Function)
由于 Environment
和 Reward Function
在游戏开始之前就已经确定好了,所以唯一能做的就是通过调整 Agent
(实际是调整内部的 Policy
),得到最大奖励
。
Agent
中的 Policy
相当于一个函数
A
c
t
i
o
n
=
π
θ
(
O
b
s
e
r
v
a
t
i
o
n
)
Action = π_\theta(Observation)
Action=πθ(Observation) 。输入是观察的内容,输出是要做出的动作。由于这个函数是未知的,所以参数用
θ
\theta
θ 表示。 以人下棋为例,Agent相当于是下棋的人,Policy是人下棋的套路(或者说是下棋的策略),Policy相当于一个函数,输入的当前棋的局势,输出是落子的位置。
2.游戏示例
游戏开始图:

游戏结束图:

游戏过程:
- 首先,Agent观察到游戏当前的状态(Observation)为 s 1 s_1 s1,Agent做出了动作(Action) a 1 a_1 a1,得到了奖励(Reward) r 1 r_1 r1。此时,由于游戏的状态从 s 1 s_1 s1变成了 s 2 s_2 s2。
- 然后,Agent观察到游戏当前的状态(Observation)为 s 2 s_2 s2,Agent做出了动作(Action) a 2 a_2 a2,得到了奖励(Reward) r 2 r_2 r2。此时,由于游戏的状态从 s 2 s_2 s2变成了 s 3 s_3 s3。
- ……
- 游戏走了 T T T 步以后,游戏结束。
注意事项:
问: Observation和State含义是否相同?
答: 是相同的
。Observation是从Agent的角度出发,讲Agent观察(Observation)到环境的内容;而State是从环境的角度出发,讲环境自身的状态(State)。本质是相同的,描述的是同一个东西,只是观察的角度不同而已
。
3.基本概念
3.1.回合(episode)
从游戏开始到游戏结束,一局游戏称为一个回合(episode)
。
3.2.总奖励(Total Reward)
总奖励(Total Reward, R)是指:一局游戏
从开始到结束累积
的奖励,即:
R
=
r
1
+
r
2
+
…
+
r
T
=
∑
t
=
1
T
r
t
R = r_1 + r_2 + … + r_T = \sum\limits_{t=1}^T r_{t}
R=r1+r2+…+rT=t=1∑Trt (第一步得到的奖励
r
1
r_1
r1 + 第二步得到的奖励
r
2
r_2
r2 + …… + 第T步得到的奖励
r
T
r_T
rT。)
3.3.轨迹(Trajectory)
定义:
在一局游戏中,把Agent观察到的状态
s
s
s 、Agent采取的动作
a
a
a 串联起来,组成一个集合,该集合称为轨迹(Trajectory)
,即:
T
r
a
j
e
c
t
o
r
y
τ
=
{
s
1
,
a
1
,
s
2
,
a
2
,
…
,
s
T
,
a
T
}
Trajectory \space \tau = \{s_1, a_1, s_2, a_2,…, s_T, a_T \}
Trajectory τ={s1,a1,s2,a2,…,sT,aT}。一局游戏对应了一个
τ
\tau
τ ,玩了
N
N
N 局游戏就能得到
N
N
N 个
τ
\tau
τ 。
某条轨迹发生的概率:
玩了
N
N
N 局游戏以后,我们可以得到
N
N
N 个
τ
\tau
τ,我们可以试图计算某条轨迹
τ
\tau
τ 出现的概率。我们用
p
θ
(
τ
)
p_\theta(\tau)
pθ(τ) 表示某个轨迹
τ
\tau
τ 出现的概率。
公式:
p
θ
(
τ
)
=
p
(
s
1
)
⋅
p
θ
(
a
1
∣
s
1
)
⋅
p
(
s
2
∣
s
1
,
a
1
)
⋅
p
θ
(
a
2
∣
s
2
)
⋅
p
(
s
3
∣
s
2
,
a
2
)
…
⋅
p
(
s
T
+
1
∣
s
T
,
a
T
)
p_\theta(\tau) =p(s_1) \cdot p_\theta(a_1|s_1) \cdot p(s_2 | s_1, a_1) \cdot p_\theta(a_2 | s_2) \cdot p(s_3 | s_2, a_2)…\cdot p(s_{T+1} | s_T, a_T)
pθ(τ)=p(s1)⋅pθ(a1∣s1)⋅p(s2∣s1,a1)⋅pθ(a2∣s2)⋅p(s3∣s2,a2)…⋅p(sT+1∣sT,aT)
公式解读:
-
p ( s 1 ) p(s_1) p(s1) 是指:游戏环境出现状态 s 1 s_1 s1的概率。这个概率由游戏控制的,我们无法得知也无法学习。
-
p θ ( a 1 ∣ s 1 ) p_\theta(a_1|s_1) pθ(a1∣s1) 是指:当Agent观察到环境状态为 s 1 s_1 s1时,做出动作 a 1 a_1 a1的概率,这部分是Agent自身可以控制的。换句话说,
优秀的Agent
知道当观察到环境状态为 s 1 s_1 s1时,采取什么样的动作action得到的奖励 r 1 r_1 r1最大。如何决策,是可以学习的。我们要学习的就是参数 θ \theta θ。 -
p ( s 2 ∣ s 1 , a 1 ) p(s_2 | s_1, a_1) p(s2∣s1,a1) 是指:在状态 s 1 s_1 s1下,Agent采取了 a 1 a_1 a1的动作后,环境跳转到状态 s 2 s_2 s2的概率。这个概率由游戏控制的,我们无法得知也无法学习。
-
p θ ( a 2 ∣ s 2 ) p_\theta(a_2 | s_2) pθ(a2∣s2) 是指:当Agent观察到环境状态为 s 2 s_2 s2时,做出动作 a 2 a_2 a2的概率,这部分是Agent自身可以控制的。如何决策,是可以学习的。我们要学习的就是参数 θ \theta θ。
公式推导:
p θ ( τ ) = p ( s 1 ) ⋅ p θ ( a 1 ∣ s 1 ) ⋅ p ( s 2 ∣ s 1 , a 1 ) ⋅ p θ ( a 2 ∣ s 2 ) ⋅ p ( s 3 ∣ s 2 , a 2 ) ⋯ p ( s T + 1 ∣ s T , a T ) = p ( s 1 ) ⋅ [ p θ ( a 1 ∣ s 1 ) ⋅ p θ ( a 2 ∣ s 2 ) ⋯ p θ ( a T ∣ s T ) ] ⋅ [ p ( s 2 ∣ s 1 , a 1 ) ⋅ p ( s 3 ∣ s 2 , a 2 ) ⋯ p ( s T + 1 ∣ s T , a T ) ] = p ( s 1 ) ⋅ ∏ t = 1 T p θ ( a t ∣ s t ) ⋅ ∏ t = 1 T p ( s t + 1 ∣ s t , a t ) = p ( s 1 ) ⋅ ∏ t = 1 T p θ ( a t ∣ s t ) ⋅ p ( s t + 1 ∣ s t , a t ) \begin{aligned} p_\theta(\tau) &= p(s_1) \cdot p_\theta(a_1|s_1) \cdot p(s_2 | s_1, a_1) \cdot p_\theta(a_2 | s_2) \cdot p(s_3 | s_2, a_2) \cdots p(s_{T+1} | s_T, a_T) \\ &= p(s_1) \cdot [p_\theta(a_1|s_1) \cdot p_\theta(a_2|s_2) \cdots p_\theta(a_T|s_T)]\cdot[p(s_2 | s_1, a_1) \cdot p(s_3 | s_2, a_2) \cdots p(s_{T+1} | s_T, a_T)] \\ &=p(s_1) \cdot \prod\limits_{t=1}^T p_\theta(a_t|s_t) \cdot \prod\limits_{t=1}^T p(s_{t+1}|s_t, a_t) \\ &=p(s_1) \cdot \prod\limits_{t=1}^T p_\theta(a_t|s_t) \cdot p(s_{t+1}|s_t, a_t) \end{aligned} pθ(τ)=p(s1)⋅pθ(a1∣s1)⋅p(s2∣s1,a1)⋅pθ(a2∣s2)⋅p(s3∣s2,a2)⋯p(sT+1∣sT,aT)=p(s1)⋅[pθ(a1∣s1)⋅pθ(a2∣s2)⋯pθ(aT∣sT)]⋅[p(s2∣s1,a1)⋅p(s3∣s2,a2)⋯p(sT+1∣sT,aT)]=p(s1)⋅t=1∏Tpθ(at∣st)⋅t=1∏Tp(st+1∣st,at)=p(s1)⋅t=1∏Tpθ(at∣st)⋅p(st+1∣st,at)
其中:
- p ( s 1 ) p(s_1) p(s1)和 p ( s t + 1 ∣ s t , a t ) p(s_{t+1}|s_t, a_t) p(st+1∣st,at)是游戏环境的参数,与Agent无关,Agent不能控制。
- p θ ( a t ∣ s t ) p_\theta(a_t|s_t) pθ(at∣st)是在 s t s_t st状态下采取行动 a t a_t at的概率,是Agent可以控制的,通过学习可以得到 p θ ( a t ∣ s t ) p_\theta(a_t|s_t) pθ(at∣st)的概率。同时根据学习可以知道面对环境状态 s t s_t st时,采取哪个 a t a_t at得到的奖励多,那我们就可以增加这个 a t a_t at的概率。
3.4.奖励期望(Expected Reward)
通过不断地玩游戏,可以获得游戏的奖励期望(Expected Reward)
,用
R
‾
θ
{\overline{R}_\theta}
Rθ 表示 。
奖励期望可以理解成:玩游戏获得的平均奖励。玩了N局游戏,得到了N条轨迹。根据全概率公式,计算每条轨迹出现的概率以及对应的奖励,可以获得奖励期望。
R ‾ θ = ∑ τ R ( τ ) ⋅ p θ ( τ ) = E τ ∼ p θ ( τ ) [ R ( τ ) ] {\overline{R}_\theta} = \sum\limits_{\tau} R(\tau) \cdot p_\theta(\tau) = E_{\tau \sim p_{\theta}(\tau)}[R(\tau)] Rθ=τ∑R(τ)⋅pθ(τ)=Eτ∼pθ(τ)[R(τ)]
R
(
τ
)
R(\tau)
R(τ) :指的是某条轨迹对应的总的奖励值
。
p
θ
(
τ
)
p_\theta(\tau)
pθ(τ):指的是某条轨迹出现的概率
。
对应关系:
1
1
1 个奖励期望对应了
N
N
N 条游戏轨迹
τ
\tau
τ。
1
1
1 条游戏轨迹
τ
\tau
τ 对应了游戏的
T
T
T 步(骤)。
3.5.求奖励期望最大值
我们的目标是想知道模型Agent什么时候可以得到最大的奖励期望值
R
‾
θ
{\overline{R}_\theta}
Rθ。但模型是带有参数
θ
\theta
θ 的,我们需要通过解方程知道当参数
θ
\theta
θ 值为多少时,可以获得最大的奖励期望值。(知道
θ
\theta
θ 的取值,模型就是已知模型了。)在此,我们利用梯度下降的方法
进行
θ
\theta
θ 的求解。
梯度下降法更新公式:
θ
=
θ
+
η
⋅
∇
R
‾
θ
\theta = \theta + \eta \cdot \nabla{\overline{R}_\theta}
θ=θ+η⋅∇Rθ
其中,
η
\eta
η 是学习率,是人为设置的。
∇
R
‾
θ
\nabla{\overline{R}_\theta}
∇Rθ 是对
R
‾
θ
{\overline{R}_\theta}
Rθ 的梯度值,因此需要先对
R
‾
θ
{\overline{R}_\theta}
Rθ 求梯度。