IEEE754浮点数以及移码的设计思想

本文介绍了IEEE754浮点数标准中移码的设计思想,旨在将真值映射到正数域,简化大小比较。通过移码,阶码的比较变得直接,避免了负号处理。同时,解释了为什么阶码偏移量选择127而不是128,以确保最大表示范围。此外,还讨论了尾数的表示方式,隐藏最高有效位以提高精度,并概述了比较两个浮点数的步骤,包括数符和阶码的比较。

首先复习一下关于“码”的知识点:

二进制整数都是以补码形式出现的。

  • 正数的补码与反码、原码一致,
  • 负数的补码是反码+1.这样使减法运算可以使用加法器实现,符号位也参与运算;
  • 移码与补码就是符号位取反

移码的设计思想

首先抛出结果:E = (2^{n-1} -1) + e   (E为阶码,e为真值)。

移码的几何意义是把真值映射到一个正数域,其特点是可以直观地反映两个真值的大小,即移码大的真值也大。

基于这个特点,对计算机来说用移码比较两个真值的大小非常简单,只要高位对齐后逐个比较即可,不用考虑负号的问题,这也是阶码会采用移码表示的原因所在。

问题:为什么要阶码真值+127而不是+128呢?

因为8个二进制位能表示指数的取值范围为[-128,127],现在将指数变成移码表示,即将区间[-128,127]正向平移到正数域,区间里的每个数都需要加上1

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值