yolov5及其算法改进
1、YOLOV5目标检测简介
YOLOv5 是一个基于 Anchor 的单阶段目标检测,其主要分为以下 5 个阶段:
1、输入端:Mosaic 数据增强、自适应Anchor计算、自适应图像缩放;
2、Backbone:提取出高中低层的特征,使用了 CSP 结构、SPPF、SiLU 等操作;
3、Neck:使用 FPN+PAN 结构,将各层次的特征进行融合,并提取出大中小的特征图;
4、Head:进行最终检测部分,在特征图上应用 Anchor Box,并生成带有类别概率、类别
得分以及目标框的最终输出向量;
5、损失函数:计算预测结果与 Ground Truth 之间的 Loss。
2、前处理
2.1、自适应 Anchor 计算
在 YOLOv3、YOLOv4 中,训练不同的数据集时,计算初始 Anchor 的值是通过单独的程序运行的。但 YOLOv5 中将此功能嵌入到代码中,每次训练时会自适应的计算不同训练集中的最佳 Anchor 值。
2.2、自适应计算 Anchor 的流程如下:
1、载入数据集,得到数据集中所有数据的 w、h;
2、将每张图像中 w、h 的最大值等比例缩放到指定大