MATLAB-----模拟退火

这段代码实现了一个基于模拟退火算法的三维数据点聚类过程。首先初始化类中心和样本类别,然后通过不断迭代调整样本的类别归属,计算新的类中心,以及每个类别的类内点到中心的距离之和作为目标函数。在每次迭代中,依据模拟退火算法的概率接受可能恶化的新解,以期找到全局最优解。经过多次退火过程,最终得到一个较低的目标函数值,表示类内点与中心的距离之和较小,聚类效果较好。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

% clc;
close all;clear all;
p=[ 1739.94	1675.15	2395.96
373.3	3087.05	2429.47
1756.77	1652	1514.98
864.45	1647.31	2665.9
222.85	3059.54	2002.33
877.88	2031.66	3071.18
1803.58	1583.12	2163.05
2352.12	2557.04	1411.53
401.3	3259.94	2150.98
363.34	3477.95	2462.86
1571.17	1731.04	1735.33
104.8	3389.83	2421.83
499.85	3305.75	2196.22
2297.28	3340.14	535.62
2092.62	3177.21	584.32
1418.79	1775.89	2772.9
1845.59	1918.81	2226.49
2205.36	3243.74	1202.69
2949.16	3244.44	662.42
1692.62	1867.5	2108.97
1680.67	1575.78	1725.1
2802.88	3017.11	1984.98
172.78	3084.49	2328.65
2063.54	3199.76	1257.21
1449.58	1641.58	3405.12
1651.52	1713.28	1570.38
341.59	3076.62	2438.63
291.02	3095.68	2088.95
237.63	3077.78	2251.96
1702.8	1639.79	2068.74
1877.93	1860.96	1975.3
867.81	2334.68	2535.1
1831.49	1713.11	1604.68
460.69	3274.77	2172.99
2374.98	3346.98	975.31
2271.89	3482.97	946.7
1783.64	1597.99	2261.31
198.83	3250.45	2445.08
1494.63	2072.59	2550.51
1597.03	1921.52	2126.76
1598.93	1921.08	1623.33
1243.13	1814.07	3441.07
2336.31	2640.26	1599.63
354	3300.12	2373.61
2144.47	2501.62	591.51
426.31	3105.29	2057.8
1507.13	1556.89	1954.51
343.07	3271.72	2036.94
2201.94	3196.22	935.53
2232.43	3077.87	1298.87
1580.1	1752.07	2463.04
1962.4	1594.97	1835.95
1495.18	1957.44	3498.02
1125.17	1594.39	2937.73
24.22	3447.31	2145.01
1269.07	1910.72	2701.97
1802.07	1725.81	1966.35
1817.36	1927.4	2328.79
1860.45	1782.88	1875.13
];
[num,n]=size(p);    %样品数目
centernum=4;        %类别数目

IDXO=[1 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ];
% size(IDXO)
CO(1,:)=[ 1739.94	 1675.15	 2395.96];
CO(2,:)=[373.3	3087.05	2429.47];
CO(3,:)=[1756.77	1652	1514.98];
% s1=find(IDXO==1);%聚类号为1的样品在p中的序号
% s11=p(s1,:)
s4=find(IDXO==4);%聚类号为4的样品在p中的序号
s44=p(s4,:);%全部为4类的样品矩阵
CO(4,:)=[sum(s44(:,1))/59,sum(s44(:,2))/59,sum(s44(:,3))/59];%4类的中心
JO=0;
j1=0; j2=0; j3=0; j4=0;
for i=1:num
    if IDXO(i)==4
        j4=j4+sqrt((p(i,1)-CO(1,1))^2+(p(i,2)-CO(1,2))^2+(p(i,3)-CO(1,3))^2);
    end
end
 JO=j1+j2+j3+j4;%四种类别的类内所有点与该类中心的距离和
 JO
 C=CO;J=JO;IDX=IDXO;

time=1;
Tbegin=10;Tover=0.1;%起始温度,终止温度
L=300;     %内层循环次数,
T=Tbegin;%初始化温度参数
timeb=0;%最优目标首次出现的退火次数
% K=0.0001;
tic;
IDXN=IDXO;
while T>Tover
    tt=0;
    for inner=1:L       
        %产生随机扰动,即随机改变一个聚类样品的当前所属类别
        t1=fix(rand*num+1);      %随机抽取一个样本
        t2=fix(rand*(centernum-1)+1);   %随机生成1~3的整数
        if(IDXN(t1)+t2>centernum)
            IDXN(t1)=IDXN(t1)+t2-centernum;
        else
            IDXN(t1)=IDXN(t1)+t2;
        end
%         t1=fix(rand*(num-1)+1);      %随机抽取一个样本
%         t2=fix(rand*(centernum-1)+1);   %随机生成1~4的整数
%         if(IDXN(t1)+t2>centernum)
%             IDXN(t1)=IDXN(t1)+t2-centernum;
%         else
%             IDXN(t1)=IDXN(t1)+t2;
%         end
%         IDXN(t1)=t2;
          IDXN;
        %重新计算聚类中心
        p1=find(IDXN==1);%聚类号为1的样品在p中的序号
        p11=p(p1,:);%全部为1类的样品矩阵
        [b1, a1]=size(p1);
        CN(1,:)=[sum(p11(:,1))/a1,sum(p11(:,2))/a1,sum(p11(:,3))/a1];%第一类的中心
        p2=find(IDXN==2);%聚类号为2的样品在p中的序号
        p22=p(p2,:);%全部为2类的样品矩阵
        [b2, a2]=size(p2);
        CN(2,:)=[sum(p22(:,1))/a2,sum(p22(:,2))/a2,sum(p22(:,3))/a2];%2类的中心
        p3=find(IDXN==3);%聚类号为3的样品在p中的序号
        p33=p(p3,:);%全部为3类的样品矩阵
        [b3, a3]=size(p3);
        CN(3,:)=[sum(p33(:,1))/a3,sum(p33(:,2))/a3,sum(p33(:,3))/a3];%3类的中心
        p4=find(IDXN==4);%聚类号为1的样品在p中的序号
        p44=p(p4,:);%全部为4类的样品矩阵
        [b4, a4]=size(p4);
        CN(4,:)=[sum(p44(:,1))/a4,sum(p44(:,2))/a4,sum(p44(:,3))/a4];%4类的中心

        %计算目标函数
        JN=0;
        j1=0; j2=0; j3=0; j4=0;
        for i=1:num
            if IDXN(i)==1
                j1=j1+sqrt((p(i,1)-CN(1,1))^2+(p(i,2)-CN(1,2))^2+(p(i,3)-CN(1,3))^2);
            elseif IDXN(i)==2
                j2=j2+sqrt((p(i,1)-CN(2,1))^2 +(p(i,2)-CN(2,2))^2+(p(i,3)-CN(2,3))^2);
            elseif IDXN(i)==3
                j3=j3+sqrt((p(i,1)-CN(3,1))^2+(p(i,2)-CN(3,2))^2+(p(i,3)-CN(3,3))^2);
            elseif IDXN(i)==4
                j4=j4+sqrt((p(i,1)-CN(4,1))^2+(p(i,2)-CN(4,2))^2+(p(i,3)-CN(4,3))^2);
            end
        end
        JN=j1+j2+j3+j4;%四种类别的类内所有点与该类中心的距离和

        e=JN-JO;

        %判断是否接受新解
        if  e<=0
            JO=JN;CO=CN;IDXO=IDXN;
        else
%             if(rand<exp(-e/T))
%                 JO=JN;
%                 CO=CN;
%                 IDXO=IDXN;
%             else
%                 IDXN=IDXO;IDX=IDXO;CN=CO;JN=JO;
%             end
%         end
%         else
            IDXN=IDXO;IDX=IDXO;CN=CO;
            JN=JO;
        end

    end
%内层循环结束
    
    T=T*0.9;
%     if(T==0)
%         break;
%     end
    time=time+1;
%     if(time-timeb>1000)
%         break;
%     end
    disp('已退火次数');
    A=time-1    
    disp('最优目标函数值');
    J=JO
end
time1=toc%退火需要的时间

hold on;
plot3(CO(:,1),CO(:,2),CO(:,3),'o');grid;box
%title('蚁群聚类结果(R=100,t=10000)')
xlabel('X')
ylabel('Y')
zlabel('Z')
index1 = find(IDXN == 1)
index2 = find(IDXN == 2)
index3 = find(IDXN == 3)
index4 = find(IDXN == 4)
plot3(p(index1,1),p(index1,2),p(index1,3),'r+');grid;
plot3(p(index2,1),p(index2,2),p(index2,3),'g*');grid;
plot3(p(index3,1),p(index3,2),p(index3,3),'kx');grid;
plot3(p(index4,1),p(index4,2),p(index4,3),'m.');grid;

>> moni

JO =

   7.6551e+04

已退火次数

A =

     1

最优目标函数值

J =

   3.2015e+04

已退火次数

A =

     2

最优目标函数值

J =

   2.1396e+04

已退火次数

A =

     3

最优目标函数值

J =

   2.1396e+04

已退火次数

A =

     4

最优目标函数值

J =

   2.1396e+04

已退火次数

A =

     5

最优目标函数值

J =

   2.1396e+04

已退火次数

A =

     6

最优目标函数值

J =

   2.1396e+04

已退火次数

A =

     7

最优目标函数值

J =

   2.1396e+04

已退火次数

A =

     8

最优目标函数值

J =

   2.1396e+04

已退火次数

A =

     9

最优目标函数值

J =

   2.1396e+04

已退火次数

A =

    10

最优目标函数值

J =

   2.1396e+04

已退火次数

A =

    11

最优目标函数值

J =

   2.1396e+04

已退火次数

A =

    12

最优目标函数值

J =

   2.1396e+04

已退火次数

A =

    13

最优目标函数值

J =

   2.1396e+04

已退火次数

A =

    14

最优目标函数值

J =

   2.1396e+04

已退火次数

A =

    15

最优目标函数值

J =

   2.1396e+04

已退火次数

A =

    16

最优目标函数值

J =

   2.1396e+04

已退火次数

A =

    17

最优目标函数值

J =

   2.1396e+04

已退火次数

A =

    18

最优目标函数值

J =

   2.1396e+04

已退火次数

A =

    19

最优目标函数值

J =

   2.1396e+04

已退火次数

A =

    20

最优目标函数值

J =

   2.1396e+04

已退火次数

A =

    21

最优目标函数值

J =

   2.1396e+04

已退火次数

A =

    22

最优目标函数值

J =

   2.1396e+04

已退火次数

A =

    23

最优目标函数值

J =

   2.1396e+04

已退火次数

A =

    24

最优目标函数值

J =

   2.1396e+04

已退火次数

A =

    25

最优目标函数值

J =

   2.1396e+04

已退火次数

A =

    26

最优目标函数值

J =

   2.1396e+04

已退火次数

A =

    27

最优目标函数值

J =

   2.1396e+04

已退火次数

A =

    28

最优目标函数值

J =

   2.1396e+04

已退火次数

A =

    29

最优目标函数值

J =

   2.1396e+04

已退火次数

A =

    30

最优目标函数值

J =

   2.1396e+04

已退火次数

A =

    31

最优目标函数值

J =

   2.1396e+04

已退火次数

A =

    32

最优目标函数值

J =

   2.1396e+04

已退火次数

A =

    33

最优目标函数值

J =

   2.1396e+04

已退火次数

A =

    34

最优目标函数值

J =

   2.1396e+04

已退火次数

A =

    35

最优目标函数值

J =

   2.1396e+04

已退火次数

A =

    36

最优目标函数值

J =

   2.1396e+04

已退火次数

A =

    37

最优目标函数值

J =

   2.1396e+04

已退火次数

A =

    38

最优目标函数值

J =

   2.1396e+04

已退火次数

A =

    39

最优目标函数值

J =

   2.1396e+04

已退火次数

A =

    40

最优目标函数值

J =

   2.1396e+04

已退火次数

A =

    41

最优目标函数值

J =

   2.1396e+04

已退火次数

A =

    42

最优目标函数值

J =

   2.1396e+04

已退火次数

A =

    43

最优目标函数值

J =

   2.1396e+04

已退火次数

A =

    44

最优目标函数值

J =

   2.1396e+04


time1 =

    0.6698


index1 =

     8    14    15    18    19    22    24    35    36    43    45    49    50


index2 =

     2     5     9    10    12    13    23    27    28    29    34    38    44    46    48    55


index3 =

  列 1 至 19

     1     3     7    11    17    20    21    26    30    31    33    37    40    41    47    51    52    57    58

  列 20

    59


index4 =

     4     6    16    25    32    39    42    53    54    56

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值