
import torch
import torchvision
from torch import nn
from torch.utils.data import Dataset,DataLoader
from torchvision import transforms
from d2l import torch as d2l
def load_data_fashion_mnist(batch_size,resize):
trans = []
if resize:
trans.append(transforms.Resize(size=resize))
trans.append(transforms.ToTensor())
transform = transforms.Compose(trans)
train_data = torchvision.datasets.FashionMNIST(root='./data', train=True, transform=transform,
download=True)
test_data = torchvision.datasets.FashionMNIST(root='./data', train=False, transform=transform,
download=True)
train_dataloader = DataLoader(dataset=train_data,batch_size=batch_size,shuffle=True)
test_dataloader = DataLoader(dataset=test_data,batch_size=batch_size,shuffle=False)
return train_dataloader,test_dataloader
def vgg_block(num_convs,in_channels,out_channels):
layers = []
for _ in range(num_convs):
layers.append(nn.Conv2d(in_channels,out_channels,kernel_size=3,padding=1))
layers.append(nn.ReLU())
in_channels = out_channels
layers.append(nn.MaxPool2d(kernel_size=2,stride=2))
return nn.Sequential(*layers)
def vgg(conv_arch):
conv_blks = []
in_channels = 1
for (num_convs,out_channels) in conv_arch:
conv_blks.append(vgg_block(num_convs,in_channels,out_channels))
in_channels = out_channels
return nn.Sequential(
*conv_blks,
nn.Flatten(),
nn.Linear(out_channels*7*7,4096),
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(4096,4096),
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(4096,10)
)
class Accumulator:
"""在`n`个变量上累加。"""
def __init__(self, n):
self.data = [0.0] * n
def add(self, *args):
self.data = [a + float(b) for a, b in zip(self.data, args)]
def reset(self):
self.data = [0.0] * len(self.data)
def __getitem__(self, idx):
return self.data[idx]
def try_gpu(i=0):
if torch.cuda.device_count() >= 1:
return torch.device(f'cuda:{i}')
return torch.device('cpu')
def accuracy(y_hat,y):
if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
y_hat = y_hat.argmax(axis=1)
cmp = y_hat.type(y.dtype) == y
return float(cmp.type(y.dtype).sum())
def evaluate_accuracy_gpu(net,data_iter,device=None):
if isinstance(net,nn.Module):
net.eval()
if not device:
device = next(iter(net.parameters())).device
metric = Accumulator(2)
with torch.no_grad():
for X,y in data_iter:
if isinstance(X,list):
X = [x.to(device) for x in X]
else:
X = X.to(device)
y = y.to(device)
metric.add(accuracy(net(X),y),y.numel())
return metric[0]/metric[1]
def train(net, train_iter, test_iter, num_epochs, lr, device):
"""用GPU训练模型(在第六章定义)。"""
def init_weights(m):
if type(m) == nn.Linear or type(m) == nn.Conv2d:
nn.init.xavier_uniform_(m.weight)
net.apply(init_weights)
print('training on', device)
net.to(device)
optimizer = torch.optim.SGD(net.parameters(), lr=lr)
loss = nn.CrossEntropyLoss()
animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],
legend=['train loss', 'train acc', 'test acc'])
timer, num_batches = d2l.Timer(), len(train_iter)
for epoch in range(num_epochs):
print("----------第{}轮开始训练------------".format(epoch+1))
metric = Accumulator(3)
net.train()
for i, (X, y) in enumerate(train_iter):
timer.start()
optimizer.zero_grad()
X, y = X.to(device), y.to(device)
y_hat = net(X)
l = loss(y_hat, y)
l.backward()
optimizer.step()
with torch.no_grad():
metric.add(l * X.shape[0], accuracy(y_hat, y), X.shape[0])
timer.stop()
train_l = metric[0] / metric[2]
train_acc = metric[1] / metric[2]
if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
animator.add(epoch + (i + 1) / num_batches,
(train_l, train_acc, None))
test_acc = evaluate_accuracy_gpu(net, test_iter)
animator.add(epoch + 1, (None, None, test_acc))
print(f'loss {train_l:.3f}, train acc {train_acc:.3f}, '
f'test acc {test_acc:.3f}')
print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec '
f'on {str(device)}')
if __name__ == '__main__':
batch_size = 32
lr = 0.05
num_epochs = 10
ratio = 4
conv_arch = ((1, 64), (1, 128), (2, 256), (2, 512), (2, 512))
small_conv_arch = [(pair[0],pair[1]//ratio) for pair in conv_arch]
net = vgg(small_conv_arch)
train_iter,test_iter = load_data_fashion_mnist(batch_size=batch_size,resize=224)
train(net,train_iter=train_iter,test_iter=test_iter,num_epochs=num_epochs,lr=lr,device=try_gpu())
d2l.plt.show()
loss 0.096, train acc 0.964, test acc 0.927
116.6 examples/sec on cuda:0
