图像预处理
首先吧nii格式转png,取出单张切片实验,把图像灰度值转到0-255.
import os
import cv2
from medpy.io import load,save
import numpy as np
def label_seg(nii_path, save_folder):
data_nii_path = nii_path + '\File3' # 存放原始CT数据
file_list = os.listdir(data_nii_path) # 批量处理
for nii_data in file_list:
data, header = load(os.path.join(data_nii_path, nii_data)) # 加载nii文件
img, header1 = load(os.path.join(data_nii_path, nii_data.replace('segmentation', 'volume')))
# str.replace(old,new)用new替换old(字符串)
# 加窗处理,过滤掉过于的组织
img[img > 250] = 250
img[img < -250] = -250
stomach = np.zeros(data.shape) # 创建一个全为0的矩阵,形状与加载的nii文件大小一样
img_name = os.path.split(nii_data) # 分离文件名,用以保存时的文件名前缀
'''
split() 通过指定分隔符对字符串进行切片,如果参数 num 有指定值,则分隔 num+1 个子字符串
str.split(str="", num=string.count(str)).
str -- 分隔符,默认为所有的空字符,包括空格、换行(\n)、制表符(\t)等。
num -- 分割次数。默认为