算法题解(贪心篇)

本文介绍了贪心算法的基础理论,通过实例解读如何解决分发饼干问题和摆动序列问题。首先,理解贪心策略如何在每一步选择局部最优解以逼近全局最优。接着,详细展示了分发饼干问题的简单解决方案,以及如何利用贪心策略判断摆动序列的最长子序列。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

贪心理论基础

贪心的本质是选择每一阶段的局部最优,从而达到全局最优

这么说有点抽象,来举一个例子:

例如,有一堆钞票,你可以拿走十张,如果想达到最大的金额,你要怎么拿?

指定每次拿最大的,最终结果就是拿走最大数额的钱。

每次拿最大的就是局部最优,最后拿走最大数额的钱就是推出全局最优。

再举一个例子如果是 有一堆盒子,你有一个背包体积为n,如何把背包尽可能装满,如果还每次选最大的盒子,就不行了。这时候就需要动态规划。动态规划的问题在下一个系列会详细讲解。

贪心一般解题步骤

贪心算法一般分为如下四步:

  • 将问题分解为若干个子问题
  • 找出适合的贪心策略
  • 求解每一个子问题的最优解
  • 将局部最优解堆叠成全局最优解

455. 分发饼干 - 简单 - 10.27

455. 分发饼干 - 简单

假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。

对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j,都有一个尺寸 s[j] 。如果 s[j] >= g[i],我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。

在这里插入图片描述


可以尝试使用贪心策略,先将饼干数组和小孩数组排序。

然后从后向前遍历小孩数组,用小饼干优先满足胃口小的,并统计满足小孩的数量。

class Solution {
    public int findContentChildren(int[] g, int[] s) {
        if (g == null || s == null) return 0;
        //排序
        Arrays.sort(g);
        Arrays.sort(s);

        int gi = 0, si = 0;
        while (gi < g.length && si < s.length) {
            //如果胃口值 小于等于 饼干尺寸,则可以分配
            if (g[gi] <= s[si]) {
                gi++;
            }
            si++;
        }
        return gi;   
    }
}

在这里插入图片描述

376. 摆动序列 - 中等 - 10.28

376. 摆动序列 - 中等

如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为 摆动序列 。第一个差(如果存在的话)可能是正数或负数。仅有一个元素或者含两个不等元素的序列也视作摆动序列。

例如, [1, 7, 4, 9, 2, 5] 是一个 摆动序列 ,因为差值 (6, -3, 5, -7, 3) 是正负交替出现的。

相反,[1, 4, 7, 2, 5] 和 [1, 7, 4, 5, 5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。
子序列 可以通过从原始序列中删除一些(也可以不删除)元素来获得,剩下的元素保持其原始顺序。

给你一个整数数组 nums ,返回 nums 中作为 摆动序列 的 最长子序列的长度 。

在这里插入图片描述


解析:贪心算法

在这里插入图片描述

class Solution {
    public int wiggleMaxLength(int[] nums) {
        if(nums == null || nums.length <= 1){
            return nums.length;
        }
        //当前差值
        int curDiff = 0;
        //上一个差值
        int preDiff = 0;
        //统计个数
        int count = 1;
        //遍历
        for(int i=1; i<nums.length; i++){
            //计算当前差值
            curDiff = nums[i] - nums[i-1];
            //如果为一正一负
            if((curDiff > 0 && preDiff <=0) || (curDiff < 0 && preDiff >=0)){
                count++;
                preDiff = curDiff;
            }
        }
        return count;
    }
}

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值