贪心理论基础
贪心的本质是选择每一阶段的局部最优
,从而达到全局最优
。
这么说有点抽象,来举一个例子:
例如,有一堆钞票,你可以拿走十张,如果想达到最大的金额,你要怎么拿?
指定每次拿最大的,最终结果就是拿走最大数额的钱。
每次拿最大的就是局部最优,最后拿走最大数额的钱就是推出全局最优。
再举一个例子如果是 有一堆盒子,你有一个背包体积为n,如何把背包尽可能装满,如果还每次选最大的盒子,就不行了。这时候就需要动态规划。动态规划的问题在下一个系列会详细讲解。
贪心一般解题步骤
贪心算法一般分为如下四步:
- 将问题分解为若干个子问题
- 找出适合的贪心策略
- 求解每一个子问题的最优解
- 将局部最优解堆叠成全局最优解
455. 分发饼干 - 简单 - 10.27
假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。
对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j,都有一个尺寸 s[j] 。如果 s[j] >= g[i],我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。
可以尝试使用贪心策略,先将饼干数组和小孩数组排序。
然后从后向前遍历小孩数组,用小饼干优先满足胃口小的,并统计满足小孩的数量。
class Solution {
public int findContentChildren(int[] g, int[] s) {
if (g == null || s == null) return 0;
//排序
Arrays.sort(g);
Arrays.sort(s);
int gi = 0, si = 0;
while (gi < g.length && si < s.length) {
//如果胃口值 小于等于 饼干尺寸,则可以分配
if (g[gi] <= s[si]) {
gi++;
}
si++;
}
return gi;
}
}
376. 摆动序列 - 中等 - 10.28
如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为 摆动序列 。第一个差(如果存在的话)可能是正数或负数。仅有一个元素或者含两个不等元素的序列也视作摆动序列。
例如, [1, 7, 4, 9, 2, 5] 是一个 摆动序列 ,因为差值 (6, -3, 5, -7, 3) 是正负交替出现的。
相反,[1, 4, 7, 2, 5] 和 [1, 7, 4, 5, 5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。
子序列 可以通过从原始序列中删除一些(也可以不删除)元素来获得,剩下的元素保持其原始顺序。
给你一个整数数组 nums ,返回 nums 中作为 摆动序列 的 最长子序列的长度 。
解析:贪心算法
class Solution {
public int wiggleMaxLength(int[] nums) {
if(nums == null || nums.length <= 1){
return nums.length;
}
//当前差值
int curDiff = 0;
//上一个差值
int preDiff = 0;
//统计个数
int count = 1;
//遍历
for(int i=1; i<nums.length; i++){
//计算当前差值
curDiff = nums[i] - nums[i-1];
//如果为一正一负
if((curDiff > 0 && preDiff <=0) || (curDiff < 0 && preDiff >=0)){
count++;
preDiff = curDiff;
}
}
return count;
}
}