现实层面浅谈数据挖掘的基本流程

本文介绍了数据挖掘与数据分析的区别,并详细阐述了数据挖掘的七大流程,包括定义问题、建立数据挖掘库、分析数据、准备数据、建立模型、评价模型和实施。在每个步骤中,强调了关键点和目标,例如模型建立的反复性、数据准备的四个内容以及模型评价的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

(本文是笔者查阅一定资料整理原创所写,受知识面限制,如存在错误,欢迎指出)
数据挖掘不同于传统意义上的数据分析。
数据挖掘是指从大量的数据中通过算法搜索隐藏于其中信息的过程。
首先,除去建立有专门数据系统的大型公司和互联网服务公司的大数据分析与挖掘,数据挖掘通常的针对内容为内部企业行业的小众化数据挖掘,其主要的目的是为了在挖掘过程中发现的问题进行针对性诊断,而数据分析是建立在结果导向的基础上,对数据进行针对的分析和诊断,其研究侧重于分析趋势和发展。
在这里插入图片描述
数据挖掘通过统计、在线分析处理、情报检索、机器学习等计算机科学算法,实现获取海量数据中的有价值信息。尽管数据挖掘的办法会针对不同类型的数据,数据获取方法,数据存储模型等因素的不同而存在一定的差异,然建立标准化的数据挖掘步骤,是实现高效数据挖掘的良好基础和前提,归纳起来,数据挖掘的标准化步骤通常包含以下七个流程:
第一步:定义问题
尽管在前文中提到,数据挖掘区别与传统数据分析的最大差异在于:数据分析属于结果导向性的一种对数据处理的一个过程,而数据挖掘的主观意志相对较弱,侧重于针对数据处理的结果进行问题的挖掘和研究。然数据挖掘依旧需要在一开始了解数据和业务的基础上,针对于可能需要解决的问题和目标有一个相对明确的定义,因为这一步关系到后期挖掘过程中所建模型的选择———针对不同目标,建立出的可能会完全不同。
第二步:建立数据挖掘库
数据挖掘库的建立基础在于日常过程中的持续性数据收集和对于数据挖掘库的维护工作,基于以上两点,评估出数据的质量以实现对于数据的清理工作,达到合并和整合,构建元数据的目的。这些工作都是高效数据挖掘实现的基础。
在这里插入图片描述
第三步:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值