PCA-APCA-MLR

PCA-APCA-MLR是主成分分析结合绝对主成分得分和多元线性回归的技术,常用于水文学中量化污染源贡献率。它通过降维和绝对化处理解决数据复杂性,但需预设主成分数量,可能影响准确性。该方法优点包括降低数据维度,避免因子得分不确定性,量化污染源贡献;缺点是确定主成分数量主观,数据标准化可能改变关系,且假设污染源独立。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

全称

principal component analysis-absolute principal component score-multiple linear regression
在这里插入图片描述

原理

绝对因子分析/多元线性回归受体模型(APCS—MLR)的基本原理是将因子分析的主因子得分转化为绝对主因子得分(APCS),各指标含量再分别对所有的APCS进行多元线性回归,回归系数用于计算各个主因子对应的污染源对每个样本点位某指标含量的贡献量。

首先对所有因子含量数据进行标准化,再按照以下步骤计算:对所有因子引入1个浓度为0的人为样本,再计算得到0浓度样本的因子分数,公式为:

Zio=0−Cˉiσi=−CˉiσiZ_{io}=\frac{0-\bar C_i}{\sigma_i}=-\frac{\bar C_i}{\sigma_i}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

balabalahoo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值