深度学习常见的激活函数

Sigmoid 激活函数

表达式:
Sigmoid(x)=11+e−x {Sigmoid}(x) = \frac{1}{1 + e^{-x}} Sigmoid(x)=1+ex1
作图:
在这里插入图片描述

  • 定义:将输入值映射到 0 到 1的区间内。
  • 优点:输出值在 0 和 1 之间,适用于二分类问题。
  • 缺点: 当输入值过大或过小时,会出现梯度消失问题。

ReLU 激活函数

表达式:
ReLU(x)={x,如果 x>00,如果 x≤0 {ReLU}(x) = \begin{cases} x, & \text{如果} \ x > 0 \\ 0, & \text{如果} \ x \leq 0 \end{cases} ReLU(x)={x,0,如果 x>0如果 x0
作图:
在这里插入图片描述

  • 定义:将输入值中的负数部分设为 0,正数部分保持不变。
  • 优点:计算简单,高效。在深层网络中能够有效缓解梯度消失问题。
  • 缺点:当输入值为负时,神经元将不更新权重,导致“神经元死亡”问题。

Tanh 激活函数

表达式:
Tanh(x)=ex−e−xex+e−x {Tanh}(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} Tanh(x)=ex+exexex
作图:
在这里插入图片描述

  • 定义:将输入值映射到 -1 到 1 的区间内。
  • 优点: 输出值中心对称,零均值有助于网络收敛。
  • 缺点: 也会出现梯度消失问题。

Linear 激活函数

表达式:
Linear(x)=x {Linear}(x) = x Linear(x)=x
作图:
在这里插入图片描述

  • 定义:输出值与输入值保持一致。
  • 应用场景:常用于回归问题的输出层。
  • 缺点:不引入非线性特性,不能解决复杂问题。
激活函数输出范围优点缺点
Sigmoid0,10, 10,1二分类问题常用梯度消失问题
ReLU[0,+∞)[0, +\infty)[0,+)简单高效可能导致神经元死亡
Tanh(−1,1)(-1, 1)(1,1)零均值,有助于收敛梯度消失问题
Linear(−∞,+∞)(-\infty, +\infty)(,+)适用于回归问题无法引入非线性特性

在这里插入图片描述

Softmax激活函数

假设有一个向量z=[z1,z2,...,zn]z = [z_1, z_2, ..., z_n]z=[z1,z2,...,zn],Softmax 函数的输出是一个概率分布,公式如下:

Softmax(zi)=ezi∑j=1nezj Softmax(z_i) = \frac{e^{z_i}}{\sum_{j=1}^{n} e^{z_j}} Softmax(zi)=j=1nezjezi

其中:

  • ziz_izi 是输入向量中的第 i个元素。
  • e 是自然对数的底(约等于 2.718)。
  • 输出的值是一个归一化的概率分布,所有值的总和为 1。
  • Softmax 将输入的 logits 转换为概率值
  • 每个输出值都介于 0 和 1 之间,并且所有输出值的总和为 1,因此它表示一个概率分布。
  • Softmax 的值越大,说明模型越确信这个类别是正确的
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值