使用本地whl离线安装torch_geometric库(PyG)

最近在准备GCN运行环境,需要安装PyG库,遇到了很多问题,一一解决形成了本篇博客。本文采用的是离线安装。需要在本地下载whl文件。

1.

在安装前要检查电脑的上的python、torch和cuda版本

import torch
print(torch.__version__)
#检查torch版本;

import torch
print(torch.version.cuda)
#检查cuda版本;

以我的为例:

2.在官网找到对应的版本,进行下载。(data.pyg.org/whl/

我的torch版本是1.12.0+cu113,看自己的版本是哪一个就下载哪一个,也有CPU版本。

需要下载的文件有4个,分别是1.torch-scatter 2.torch-sparse 3.torch-cluster 4.torch-spline-conv

下载到一个自己能找到的位置。

依次安装这四个文件。需要注意的是,我需要把文件安装在已经有的torch环境中,就需要从anaconda进入文件路径进行安装。指令是 pip install + 包名,这里举例,我的版本已经知道torch=1.12.0,cuda=113。


                
<think>好的,用户想安装torch_geometric,但可能遇到了问题。首先,我需要回忆一下安装这个的常见步骤和相关依赖。 根据用户提供的引用内容,安装torch_geometric需要先安装几个依赖,比如torch-scatter、torch-sparse等。不同的PyTorch版本和系统环境可能需要不同的依赖版本,所以首先要确定用户的环境,比如PyTorch版本、操作系统和Python版本。 引用[1]提到使用conda安装时报错,后来改用pip,并给出了具体的安装命令。这说明可能在某些情况下conda的安装方式不够稳定,pip更可靠。但需要根据PyTorch的版本选择对应的依赖,比如提供的链接中的torch-2.4.0+cpu。 引用[2]和[3]则展示了在Mac M1和Windows系统下手动下载whl文件安装的方法。这可能是因为某些平台没有预编译的包,或者网络问题导致直接pip安装失败,需要用户手动下载安装。 引用[4]提到导入torch_geometric时报错,可能的原因包括依赖未正确安装或版本不兼容。因此,在安装过程中要特别注意依赖的版本匹配。 接下来,我需要将这些信息整理成步骤,指导用户根据他们的环境选择合适的安装方式。首先确认PyTorch版本,然后安装依赖,最后安装torch_geometric。同时,如果遇到问题,可以尝试手动下载whl文件或者使用清华镜像源加速安装。 需要注意的是,不同操作系统和硬件架构(如Mac M1)可能需要特定的依赖版本,用户需要根据官方文档或提供的链接找到对应的whl文件。另外,安装顺序也很重要,先安装依赖再安装。 最后,生成相关问题,帮助用户解决常见的安装问题,比如依赖安装失败、版本冲突等。</think>### 如何在Python中安装torch_geometric? #### **步骤说明** 1. **确认PyTorch版本** `torch_geometric`需要与PyTorch版本严格匹配。通过以下命令查看PyTorch版本: ```python import torch print(torch.__version__) # 例如输出:2.4.0 ``` 2. **安装依赖** 根据PyTorch版本和系统环境,安装以下依赖(以PyTorch 2.4.0和CPU环境为例): ```bash pip install pyg_lib torch_scatter torch_sparse torch_cluster torch_spline_conv -f https://data.pyg.org/whl/torch-2.4.0+cpu.html ``` 如果网络不稳定,可手动从[PyG官方页面](https://pytorch-geometric.com/whl/)下载对应`.whl`文件并安装[^2][^3]。 3. **安装torch_geometric** 使用pip直接安装: ```bash pip install torch_geometric ``` 若下载缓慢,可添加清华镜像源: ```bash pip install torch_geometric -i https://pypi.tuna.tsinghua.edu.cn/simple/ ``` --- #### **常见问题解决** - **依赖安装失败** 确保依赖版本与PyTorch匹配。例如,PyTorch 2.4.0需选择`torch-scatter-2.1.2+pt24cpu`等[^3]。 - **Mac M1兼容性问题** 手动下载依赖的`.whl`文件(如`torch-cluster==1.5.4`)并使用`pip install <文件名>`安装[^2]。 - **导入时报错** 检查依赖是否完整安装,或尝试更新PyTorch到兼容版本[^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值