图机器学习--DeepWalk&Node2Vec

DeepWalk和Node2Vec是两种将word2vec应用于图数据的无监督学习方法,主要用于节点嵌入。DeepWalk通过随机游走采样学习节点的连续向量表示,捕捉图的结构信息。Node2Vec则引入有偏随机游走,增强对节点邻域多样性的探索。这两种技术在处理大规模网络数据,如社交网络分析、节点分类和链接预测等方面展现出高效性和准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.DeepWalk、

把word2vec应用到图中
一个醉汉在图中随机游走,采样出若干个随机序列。
假设:相邻节点应该具有相似地embedding
解决图嵌入问题,将节点编码为d维向量(无监督学习)
图嵌入中隐式包含了graph中的社群、连接、结构信息,可用于节点分类等下游任务(监督学习)
在这里插入图片描述
Skip-gram 和 CBOW 模型是两种常用的word2vec的模型
如果是用一个词语作为输入,来预测它周围的上下文,那这个模型叫做『Skip-gram 模型』
而如果是拿一个词语的上下文作为输入,来预测这个词语本身,则是 『CBOW 模型』

与word2vec类似,用节点1预测周围节点就是Skip-gram 模型
在这里插入图片描述
机器语言无法识别语言,需要将句子或者单词编码为向量

下图目标:将词编码为向量,可以反映词与词之间的关系(性别关系、时态关系、国家和首都的关系)
在这里插入图片描述
『Skip-gram 模型』:中心词预测周围词
『CBOW 模型』:周围词预测中心词。
为什么要用周围词预测中心词?:因为,word2vec的假设是临近词是相似的,相关联的。因此可以自监督地有效提取词向量。这些词向量可以反映相似性。
在这里插入图片描述
Skip-gram 模型为例:
在这里插入图片描述

1.1 deepwalk官方:

在这里插入图片描述

1.1.1 提取特征

在这里插入图片描述
降维
在这里插入图片描述
在这里插入图片描述
优点:

  1. 可扩展,增量学习。在线学习算法,新加入节点后无须重新训练,只须把新的关联数据采样下来增量训练即可
  2. 套用自然语言模型
  3. 效果不错,特别是在稀疏标注的图分类任务上
    在这里插入图片描述

1.1.2 语言模型

词嵌入是热点研究
词频呈现长尾分布或二八分布:少部分词出现的频率很高,大部分词出现的频率很低
在这里插入图片描述

1.1.3 deepwalk

分为五个步骤

  1. 输入图
  2. 随机游走采样
  3. 图嵌入
  4. softmax(分类较多)
  5. 得到每个节点的向量表示
    在这里插入图片描述
    随机游走采样
    在这里插入图片描述
    计算条件概率
    在这里插入图片描述
    分层分类,每个节点是一个逻辑回归(工程应用)
    在这里插入图片描述
    参数优化有两次
    在这里插入图片描述

1.1.4 评估

deepwalk在标注比例非常少的情况下表现非常好
在这里插入图片描述
在这里插入图片描述
可扩展,并行计算
在这里插入图片描述

1.1.5 展望

streaming:不需要知道图的全貌,可扩展
non-random walks:可以不随机,设置一些游走偏好优化随机游走的生成 ;把图当作语言,二者相辅相成

在这里插入图片描述
在这里插入图片描述

1.2 讨论

初级图机器学习算法
在这里插入图片描述

1.3 DeepWalk论文精读

DeepWalk: Online learning of social representation
用于图节点嵌入的在线机器学习算法
将图中节点编码为向量用于统计模型

1.3.1 Introduction

网络和图是比较稀疏的,如14亿人的社交网络,每个人只认识几百人,每个节点的连接是比较稀疏的。这种稀疏性使得一些离散算法(计算最短路径,计算传染病的传染过程等与路径相关的)的表现较好;而统计机器学习模型去进行分类或回归效果交叉,因为统计机器学习模型希望每个特征都有用,不希望很多特征都是0。

deepwalk学习到网络的连接结构信息,包含邻域信息和社群信息,表示为连续稠密低维向量。稠密指的是每一个元素都不为0。(14亿人的社交网络,每个节点的向量不是14亿维,而是十几维或者几十维,且每个元素不为0)

DeepWalk的输入是图,输出是每个节点的embedding。原图中相近的点,嵌入后向量是相似的。

异质图:节点和连接有多种类型

传统机器学习,数据集满足独立同分布(i.i.d.假设);而图中节点之间有连接,不满足该假设。

Deepwalk是

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值