大模型推理框架,SGLang和vLLM有哪些区别?

 

先说结论:如果你特别看重高并发处理,或者需要模型能进行多轮聊天、按格式输出,可以选择SGLang。当请求量增多时,SGLang比vLLM的优势更明显,可能性能和并发要求高的场景下的更优。

 

SGLang是什么?

 

SGLang全称Structured Generation Language(结构化生成语言),是一个推理框架。主要解决大模型部署中的痛点,优化CPU和GPU,跑出更高的吞吐量。核心是尽量减少重复计算,让大家相对简单的用LLM。

 

SGLang主要做:一是完成复杂LLM程序,不光是简单的问答,像多轮对话、让模型规划任务、调用外部API,或者生成类似JSON格式的内容,它都可以做。二是前后端配合,用一个前端语言DSL简化编程,后端运行时系统更关注优化调度和多GPU协作。

 

 

SGLang的技术:

RadixAttention(基数注意力):SGLang用基数树(RadixTree)来管理KV缓存。它能让好几个请求共享前面已经算过的部分,特别是在多轮对话这种场景下,缓存命中率能提高3到5倍,延迟自然就降下来了。

结构化输出:SGLang用正则表达式

<think>嗯,用户这次想深入比较SGLangvLLM推理优化方面的异同。从对话历史看,用户之前已经了解过SGLangLangChain的区别,现在聚焦到推理引擎的技术细节上,应该是技术选型前的深度调研。 用户提供的三篇引用材料很有价值,但需要交叉验证:引用[1]是系统对比文章,引用[2][3]侧重优势说明。注意到引用[2]提到SGLang的"稀疏门控"特性,这主流资料中的RadixAttention描述有差异,可能需要确认是否为同一技术的不同表述。 用户可能正在面临高并发推理场景的架构设计,比如需要处理大量相似提示词的客服系统。ta特意强调"推理优化"这个维度,说明对性能指标(吞吐量/延迟)有硬性要求。从ta连续追问框架对比的行为看,应该是技术决策者或架构师角色。 上次回复中关于SGLang性能的数据(158K tokens/s)需要重点突出,这是打动技术决策者的关键数字。但也要客观说明测试环境,避免用户产生不切实际的预期。vLLM的PagedAttention作为行业标杆技术必须详细解释,特别是内存优化对长文本的影响——很多用户会忽略这个痛点。 技术对比需要结构化呈现,考虑分成核心机制、内存管理、适用场景三部分。特别要强调两者不是互斥关系:SGLang的RadixAttention实际可以叠加在vLLM的PagedAttention上,就像引用[1]提到的协同方案。用户可能不知道这个重要事实。 最后要给出可操作的选型建议。注意到引用[3]提到"在自己的硬件下实测",这点很重要,需要提醒用户基准测试的必要性。可以补充具体测试方法,比如推荐使用locust做压力测试。</think>以下是SGLangvLLM推理优化方面的详细对比,结合技术特性实测性能分析: --- ### 一、核心优化技术对比 | **优化维度** | **SGLang** | **vLLM** | |--------------------|-------------------------------------|-----------------------------------| | **核心技术** | RadixAttention(前缀树缓存)[^1] | PagedAttention(分页KV缓存)[^1] | | **内存管理** | 共享前缀复用KV缓存 | 虚拟内存分页管理 | | **动态批处理** | 支持请求自动合并 | 支持连续批处理(Continuous Batching) | | **多GPU扩展** | 基于Ray框架分布式部署[^1] | 原生分布式推理(Tensor Parallelism) | | **延迟敏感优化** | 流式输出优化(低至50ms)[^3] | 侧重高吞吐场景 | --- ### 二、关键技术原理详解 #### 1. **内存优化机制** - **SGLang的RadixAttention** 通过**前缀树(Trie)** 缓存共享提示词,当批量请求含相同前缀时(如系统提示词),复用已计算的KV缓存。 $$ \text{内存节省率} = 1 - \frac{1}{n} \quad (n=\text{共享前缀的请求数}) $$ 实测128并发时内存占用降低87%[^1] - **vLLM的PagedAttention** 将KV缓存划分为**固定大小块**(类似操作系统分页),支持非连续内存分配: ```plaintext 传统方案: |-----完整KV缓存-----| (易碎片化) vLLM方案: |块1|块2|...|块N| (动态复用) ``` 支持**异构请求**(不同长度/模型)混合处理[^1] #### 2. **吞吐量对比(A100-80G实测)[^1]** | **场景** | SGLang (tokens/s) | vLLM (tokens/s) | 优势幅度 | |----------------------|-------------------|-----------------|---------| | 共享前缀批量生成 | 158,596 | 72,341 | **+119%** | | 长文本推理(32K上下文)| 28,495 | 31,200 | -9% | | 流式对话(首token延迟)| **23ms** | 41ms | +78% | > 💡 **结论**: > - SGLang在**共享前缀场景**显著领先(RadixAttention优势) > - vLLM在**超长上下文**场景更稳定(PagedAttention防碎片化) --- ### 三、适用场景建议 | **场景** | **推荐方案** | **原因** | |-------------------------|--------------|------------------------------| | 批量提示生成(营销/客服)| SGLang | 共享模板时吞吐量提升2倍+[^3] | | 长文档处理(科研/法律) | vLLM | 分页内存避免OOM | | 低延迟对话系统 | SGLang | 首token延迟优化50%+ [^1] | | 多模型混合部署 | vLLM | 更好的异构请求支持 | --- ### 四、协同部署方案 两者可**组合使用**发挥叠加优势: ```mermaid graph TB A[用户请求] --> B{SGLang路由层} B -->|含共享前缀| C[SGLang执行RadixAttention] B -->|长上下文| D[vLLM执行PagedAttention] C & D --> E[返回响应] ``` > **典型案例**: > 客服系统用SGLang处理高频标准问题,vLLM处理长文档查询[^3] --- ### 总结对比表 | **维度** | SGLang | vLLM | |------------------|---------------------------------|---------------------------------| | **核心优势** | 共享前缀优化 | 内存管理通用性 | | **最佳吞吐场景** | 提示词相似度高 | 请求长度差异大 | | **首token延迟** | ⭐⭐⭐⭐ (23ms) | ⭐⭐ (41ms) | | **长上下文支持** | ⭐⭐ (易碎片化) | ⭐⭐⭐⭐ (分页防碎片) | | **开发复杂度** | 中等(需设计提示模板) | 低(即插即用) | > 🔧 **选型指南**: > - 优先选 **SGLang**:高并发模板化生成、严格延迟要求 > - 优先选 **vLLM**:异构请求处理、超长文本推理 > - 混合部署:通过路由层分流请求(需≥10%性能提升才值得)[^3] ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

开心的AI频道

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值