完整代码数据与注释:基于随机森林和决策树的家庭贫困程度预测项目

一、引言

背景介绍

哥斯达黎加,尽管是拉丁美洲较为繁荣的国家之一,却同样面临严重的贫困问题。贫困不仅限制着个体的发展,更是一个国家整体发展的重要制约因素。在这个背景下,本项目旨在运用先进的数据分析技术,通过深入挖掘家庭信息数据,为哥斯达黎加的贫困问题提供科学、精准的预测和解决方案。

问题定义

本项目的核心问题是如何准确预测哥斯达黎加家庭的贫困程度。通过建立预测模型,希望能够识别出最脆弱的家庭,以便社会资源能够有针对性地用于援助和支持。这不仅有助于改善贫困家庭的生活状况,还可以优化社会援助的分配,提高援助的精准性和效果。

研究意义

解决贫困预测问题具有重要的社会和人道主义意义。通过深入分析家庭信息,能够深刻了解贫困问题的根本原因,找到影响家庭贫困的关键因素。这将为政府、非政府组织以及社会各方提供科学的决策依据,有助于制定更加精准、有效的社会援助计划。同时,通过提前预测家庭贫困程度,可以更迅速地响应社会问题,最大限度地减缓贫困对个体和社会的不利影响。

二、数据集概述

数据来源

本项目的数据集来源于哥斯达黎加家庭信息,包括了各种特征,涵盖了家庭成员数量、教育水平、住房情况等多个方面。

数据集大小和特征

原始数据集共有 9557 条记录,每条记录包含 143 个特征。这些特征涵盖了多个领域,包括数值型(float64、int64)和分类型(object)。

数据清洗和预处理的方法

  1. 缺失值处理
    缺失值是实际数据处理中常遇到的问题。在本项目中,对缺失值采取了以下处理方法:
  • 忽略缺失值超过10%的特征:对于缺失值较多的特征,考虑到数据量的保留和特征的重要性,选择忽略这部分特征。
  • 使用众数填充其他特征的缺失值:对于缺失值较少的特征,选择使用该特征的众数进行填充,以保持数据的完整性。
  1. 统计汇总与可视化
    在数据清洗的过程中,进行了对特征的统计汇总与可视化,以更好地理解数据的分布和特性。通过直方图、箱线图等可视化工具,可以直观地观察数据的分布情况,识别潜在的异常值。

三、数据分析

统计汇总与可视化:

  1. 使用描述统计方法对数据进行概括。
    [图片]

  2. 绘制直方图、散点图矩阵、箱线图等可视化图表,深入了解数据分布和特征间关系。
    [图片]
    在这里插入图片描述
    在这里插入图片描述

[图片]

初步发现和假设:

在数据分析的阶段,通过统计汇总和可视化工具来深入了解特征之间的关系和它们与目标变量(贫穷程度)的相关性。特别地,以下特征显示出与贫穷程度较高的相关性:

  1. agesq: 该特征可能是家庭中个体年龄的平方。年龄是一个重要的社会经济因素,年龄平方可能反映出某种经济关系或依赖性。
  2. SQBmeaned:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人工智能技术小白修炼手册

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值