torch.nn.utils.clip_grad_norm_()函数详解

本文详细介绍了PyTorch中用于梯度裁剪的函数`torch.nn.utils.clip_grad_norm_()`。该函数通过规范化参数梯度,限制其范数不超过指定的最大值,以防止梯度爆炸。当总范数超过最大范数时,会按比例调整梯度。源码分析展示了如何计算所有梯度的范数并进行裁剪。此功能对于训练深度学习模型的稳定性至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

torch.nn.utils.clip_grad_norm_()函数详解

torch.nn.utils.clip_grad_norm(parameters, max_norm, norm_type=2)
  • 这个函数的主要目的是对 parameters\ parameters parameters里的所有参数的梯度进行规范化;
  •  parameters\ parameters parameters为要规范的参数, max_norm\ max\_norm max_norm为所有参数的梯度的范数的上界, norm_type\ norm\_type norm_type为范数的类型,当 norm_type=inf\ norm\_type=inf norm_type=inf时,代表无穷范数;
  •  parameters\ parameters parameters里所有参数的梯度的范数为 total_norm\ total\_norm total_norm
     max_norm>total_norm,\ max\_norm > total\_norm, max_norm>total_norm parameters\ parameters parameters里面的参数的梯度不做改变;
     max_norm<total_norm,\ max\_norm < total\_norm, max_norm<total_norm parameters\ parameters parameters里面的参数的梯度都要乘以一个系数 clip_coef\ clip\_coef clip_coef clip_coef=max_norm/(total_norm+1e−6)\ clip\_coef=max\_norm / (total\_norm + 1e-6) clip_coef=max_norm/(total_norm+1e6)
  • 附上源码:(注意源码中的这句话"The norm is computed over all gradients together"——计算所有梯度的范数)
def clip_grad_norm_(parameters, max_norm, norm_type=2):
    r"""Clips gradient norm of an iterable of parameters.
    The norm is computed over all gradients together, as if they were
    concatenated into a single vector. Gradients are modified in-place.
    Arguments:
        parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a
            single Tensor that will have gradients normalized
        max_norm (float or int): max norm of the gradients
        norm_type (float or int): type of the used p-norm. Can be ``'inf'`` for
            infinity norm.
    Returns:
        Total norm of the parameters (viewed as a single vector).
    """
    if isinstance(parameters, torch.Tensor):
        parameters = [parameters]
    #第一步
    parameters = list(filter(lambda p: p.grad is not None, parameters))
    max_norm = float(max_norm)
    norm_type = float(norm_type)
    if norm_type == inf:
        total_norm = max(p.grad.data.abs().max() for p in parameters)
    else:
        total_norm = 0
        for p in parameters:
        	#第二步
            param_norm = p.grad.data.norm(norm_type)
            #第三步
            total_norm += param_norm.item() ** norm_type
        total_norm = total_norm ** (1. / norm_type)
    clip_coef = max_norm / (total_norm + 1e-6)
    if clip_coef < 1:
        for p in parameters:
            p.grad.data.mul_(clip_coef)
    return total_norm
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值