Jetson Orin NX 配置

前提:系统烧录完成

1、安装jetpack组件(安装jetpack过程中会安装cuda、cudnn、TensorRT等)

cuDNN 安装路径: /usr/lib/aarch64-linux-gnu 

CUDA安装路径: /usr/local/cuda

sudo apt update
sudo apt install nvidia-jetpack

2、安装jtop

sudo apt-get install python3-pip
sudo pip3 install -U pip
sudo pip3 install -U jetson-stats

终端输入“jtop”会看到设备的信息

3、配置CUDA路径

sudo vim ~/.bashrc									

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/lib64
export PATH=$PATH:/usr/local/cuda/bin
export CUDA_HOME=$CUDA_HOME:/usr/local/cuda

source ~/.bashrc

执行完命令后终端输入nvcc -V查看cuda信息

nvcc -V

4、配置cudnn

cd /usr/include && sudo cp cudnn* /usr/local/cuda/include
cd /usr/lib/aarch64-linux-gnu && sudo cp libcudnn* /usr/local/cuda/lib64


sudo chmod 777 /usr/local/cuda/include/cudnn.h 
sudo chmod 777 /usr/local/cuda/lib64/libcudnn*



cd /usr/local/cuda/lib64

sudo ln -sf libcudnn.so.8.6.0 libcudnn.so.8
sudo ln -sf libcudnn_ops_train.so.8.6.0 libcudnn_ops_train.so.8
sudo ln -sf libcudnn_ops_infer.so.8.6.0 libcudnn_ops_infer.so.8
sudo ln -sf libcudnn_adv_train.so.8.6.0 libcudnn_adv_train.so.8
sudo ln -sf libcudnn_adv_infer.so.8.6.0 libcudnn_adv_infer.so.8
sudo ln -sf libcudnn_cnn_train.so.8.6.0 libcudnn_cnn_train.so.8
sudo ln -sf libcudnn_cnn_infer.so.8.6.0 libcudnn_cnn_infer.so.8

sudo ldconfig

测试cudnn是否配置成功

sudo cp -r /usr/src/cudnn_samples_v8/ ~/
cd ~/cudnn_samples_v8/mnistCUDNN
sudo chmod 777 ~/cudnn_samples_v8
sudo make clean && sudo make
./mnistCUDNN

如果在sudo make clean && sudo make 遇到如下报错,则需要安装相应的库文件

test.c:1:10: fatal error: FreeImage.h: No such file or directory
    1 | #include "FreeImage.h"
      |          ^~~~~~~~~~~~~
compilation terminated.
>>> WARNING - FreeImage is not set up correctly. Please ensure FreeImage is set up correctly. <<<

运行以下命令后,继续编译就会编译成功。

sudo apt-get install libfreeimage3 libfreeimage-dev

sudo make clean && sudo make 

./mnistCUDNN

输出Test passed!则cudnn配置完成

5、pytorch安装

sudo apt-cache show nvidia-jetpack  #查看jetpack版本,找对应的torch版本

根据jetpack版本下载对应的torch版本,pytorch下载的官网地址

安装所需要的系统软件包

sudo apt-get -y update

sudo apt-get -y install autoconf bc build-essential g++-8 gcc-8 clang-8 lld-8 gettext-base gfortran-8 iputils-ping libbz2-dev libc++-dev libcgal-dev libffi-dev libfreetype6-dev libhdf5-dev libjpeg-dev liblzma-dev libncurses5-dev libncursesw5-dev libpng-dev libreadline-dev libssl-dev libsqlite3-dev libxml2-dev libxslt-dev locales moreutils openssl python-openssl rsync scons python3-pip libopenblas-dev

 系统安装包安装完成后进入到pytorch安装包目录,执行命令

pip install torch-1.12.0a0+2c916ef.nv22.3-cp38-cp38-linux_aarch64.whl

6、torchvision安装

安装所需要的软件包

sudo apt-get update

sudo apt-get upgrade

sudo apt-get install libjpeg-dev zlib1g-dev libpython3-dev libavcodec-dev libavformat-dev libswscale-dev

下载torchvision安装文件,网络异常无法克隆的话进入torchvision文件地址

git clone --branch v0.13.0 https://github.com/pytorch/vision torchvision

torchvision配置

cd torchvision

export BUILD_VERSION=0.13.0

python3 setup.py install --user

出现下面标志表示安装结束

在import torchvision 时报下面错,重启设备就可以解决了。

>>> import torchvision
/home/nvidia/torchvision/torchvision/io/image.py:13: UserWarning: Failed to load image Python extension:
  warn(f"Failed to load image Python extension: {e}")
/home/nvidia/torchvision/torchvision/__init__.py:28: UserWarning: You are importing torchvision within its own root folder (/home/nvidia/torchvision). This is not expected to work and may give errors. Please exit the torchvision project source and relaunch your python interpreter.
  warnings.warn(message.format(os.getcwd()))

验证torch是否可以使用GPU,torch.cuda.is_available()

(py38) nvidia@nvidia-desktop:~$ python
Python 3.8.20 (default, Oct  3 2024, 15:18:56)
[GCC 11.2.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
>>> torch.cuda.is_available()
True

7、conda虚拟环景中配置TensorRT

安装jetpack时已经安装了tensorRT,只需要将tensorrt与本地进行软连接就可以在虚拟环境中使用了

sudo ln -s /usr/lib/python3.8/dist-packages/tensorrt* /home/nvidia/.local/lib/python3.8/site-packages/

或者也可以将TensorRT文件复制到虚拟环境的包文件下

<think>嗯,用户想在Jetson Orin NX上安装和配置Anaconda。我需要先回忆相关的信息,看看提供的引用内容里有没有相关的步骤。引用里提到可以使用Anaconda3或者Archiconda3,可能因为Jetson是基于ARM架构的,而标准的Anaconda可能不支持,所以Archiconda更适合? 首先,用户需要下载Anaconda或者Archiconda。根据引用2,用户需要先下载Anaconda3,或者Archiconda3。然后创建conda环境,安装Python,比如3.8版本。可能Archiconda更适合ARM架构的Jetson设备,所以建议用户使用Archiconda? 然后,安装步骤可能包括下载安装脚本,运行安装,然后初始化conda。安装完成后,需要创建环境,安装必要的包。另外,引用3提到安装jetpack组件时会安装CUDA、cuDNN等,可能用户已经安装这些了,但需要确认conda环境中的PyTorch是否支持这些库。 接下来,用户可能需要安装PyTorch,但需要对应Jetson的版本,可能需要从NVIDIA官网下载,或者使用预编译的wheel。引用1提到了安装torch和torchvision的步骤,可能需要用特定的命令安装。 还要注意环境变量的设置,比如在.bashrc中添加conda的路径,确保conda命令可用。安装完成后,验证conda是否正常工作,创建环境,安装Python包。同时,用户可能需要配置CUDA相关的环境,但引用3提到jetpack已经安装了这些,所以可能不需要额外配置? 总结步骤应该是:下载Archiconda3,安装,初始化,创建环境,安装Python,然后安装PyTorch和torchvision。可能需要检查CUDA版本是否匹配,并引用相关的参考资料,如引用1、2、3中的步骤。另外,提醒用户注意依赖项和可能的兼容性问题,比如使用ARM兼容的软件包。</think>### 在 Jetson Orin NX 上安装和配置 Anaconda 的步骤 #### 1. 选择适合 ARM 架构的安装包 由于 Jetson Orin NX 基于 ARM 架构,官方 Anaconda 可能不完全兼容。建议使用 **Archiconda3**(专为 ARM 优化的 Conda 分支)[^2]。 - 下载地址:https://github.com/Archiconda/build-tools/releases #### 2. 安装 Archiconda3 ```bash # 下载安装脚本(以 Archiconda3 0.2.3 为例) wget https://github.com/Archiconda/build-tools/releases/download/0.2.3/Archiconda3-0.2.3-Linux-aarch64.sh # 运行安装脚本 bash Archiconda3-0.2.3-Linux-aarch64.sh ``` - 安装过程中按提示确认路径(如默认 `~/archiconda3`)和初始化。 #### 3. 初始化 Conda 环境 安装完成后,执行以下命令激活 Conda: ```bash source ~/.bashrc # 或重启终端 ``` 验证安装: ```bash conda --version ``` #### 4. 创建 Python 环境 ```bash conda create -n myenv python=3.8 # 根据需求选择 Python 版本 conda activate myenv ``` #### 5. 配置 CUDA 相关依赖(可选) Jetson Orin NX 已预装 CUDA 和 cuDNN(通过 JetPack 套件)[^3]。若需在 Conda 环境中使用 PyTorch,需安装 NVIDIA 官方提供的 Jetson 兼容版本: ```bash # 示例:安装 PyTorch(需替换为官网提供的对应版本) wget https://nvidia.box.com/shared/static/p57jwntv436lfrd78inwl7iml6p13fzh.whl -O torch-1.12.0a0+8a1a6fa8.nv22.5-cp38-cp38-linux_aarch64.whl pip install torch-1.12.0a0+8a1a6fa8.nv22.5-cp38-cp38-linux_aarch64.whl # 安装 torchvision pip install torchvision==0.13.0 ``` #### 6. 验证环境 ```python import torch print(torch.__version__) # 应显示 Jetson 专用版本 print(torch.cuda.is_available()) # 应为 True[^1] ``` --- ### 关键注意事项 1. **依赖兼容性**:ARM 架构下部分 Conda 包可能缺失,建议优先使用 `pip` 安装或从源码编译。 2. **PyTorch 版本**:必须使用 NVIDIA 为 Jetson 编译的版本,普通 PyTorch 版本不兼容。 3. **JetPack 版本**:CUDA 版本需与 PyTorch 版本匹配,可通过 `nvcc --version` 查看 CUDA 版本。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值