Python实现卡方检验——检验相关性
卡方检验(Chi-Squared Test)是用来判断两个分类变量之间是否存在相关性的一种统计方法。在实际应用中,我们经常需要通过数据分析来确定变量之间的相关性,卡方检验就是其中一种经典的方法。本文将介绍如何使用 Python 实现卡方检验。
步骤:
1.导入必要的库
在 Python 中,我们需要导入 Scipy 库来实现卡方检验功能。可以采用以下代码进行导入:
from scipy.stats import chi2_contingency
2.准备数据
为了进行卡方检验,我们需要准备分类变量的数据。假设我们有两个变量 X 和 Y,它们的数据格式为:
X = [1, 2, 3, 4, 5]
Y = [10, 12, 15, 18, 20]
如果存在相关性,那么我们可以使用卡方检验来验证这一点。
3.进行卡方检验
接下来,我们可以使用 chi2_contingency()
函数来进行卡方检验。该函数的输入参数为一个二维数组,即分类变量的交叉表(Contingency Table)。对于我们给出的示例数据,输入参数应该如下所示:
observed = [[