从DLT到3d-2d PnP

这两天复习+学习主要pnp算法,虽然DLT经典并且易于理解,有时还是会忘记,并且它是3d-2d pnp的一个基础,所以今天回顾一下。

首先,我们通过2d坐标之间的坐标转换来理解DLT的流程。

场景:我们移动相机,缓慢移动,拍下两帧图像,其中有一部分交集。

目标:讲两张图像合并,或者说,求得一张图像到另一张的Projective Transformation。

如上图所示,在这里,我们对于问题重新定义,将求转换矩阵的问题,转换为两个等式。

注意观察这个等式,如果我们得到在两张图像的控制点,那么u,v,w相关量将变为已知数值。这时候,要计算的就是转换矩阵里对应的9个量。将上图的公式重新联立,形式更加直接。

转换为矩阵形式更加直接:针对一对点,可以得到一个2*9的design matrix。那么n对点就可以得到2n×9的的矩阵

这时候,如果进行svd分解,那么求得的解就是对应最小特征值的特征向量。

如果特征点数量过多,那么会导致2n*9

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值