这两天复习+学习主要pnp算法,虽然DLT经典并且易于理解,有时还是会忘记,并且它是3d-2d pnp的一个基础,所以今天回顾一下。
首先,我们通过2d坐标之间的坐标转换来理解DLT的流程。
场景:我们移动相机,缓慢移动,拍下两帧图像,其中有一部分交集。
目标:讲两张图像合并,或者说,求得一张图像到另一张的Projective Transformation。
如上图所示,在这里,我们对于问题重新定义,将求转换矩阵的问题,转换为两个等式。
注意观察这个等式,如果我们得到在两张图像的控制点,那么u,v,w相关量将变为已知数值。这时候,要计算的就是转换矩阵里对应的9个量。将上图的公式重新联立,形式更加直接。
转换为矩阵形式更加直接:针对一对点,可以得到一个2*9的design matrix。那么n对点就可以得到2n×9的的矩阵
这时候,如果进行svd分解,那么求得的解就是对应最小特征值的特征向量。
如果特征点数量过多,那么会导致2n*9