lidar_camera_calib代码解读-优化部分

本文详细解读了HKU Mars实验室开源的lidar_camera_calib项目,重点探讨了非目标方式的相机LiDAR联合标定。项目通过线特征匹配实现优化,其优点包括简洁的特征提取和有效的迭代优化,但对低线数LiDAR和环境有一定要求。在粗匹配阶段,通过枚举角度组合寻找最佳欧拉角;精匹配阶段则逐步缩短匹配距离并连续使用ceres优化。该项目提供了一种创新的标定方法,具有一定的启发意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

碎碎念

最近在调研一下non-target 方式的相机Lidar联合标定,其中包括HK mars实验室开源的项目GitHub - hku-mars/livox_camera_calib: This repository is used for automatic calibration between high resolution LiDAR and camera in targetless scenes.

这个项目在刚开始并没有得到我的足够重视,潜意识里觉得这种基于线特征的匹配不是太靠谱,但是,在仔细阅读代码后,还是觉得很多细节的处理让人收益匪浅。

先谈谈目前对于这个项目的感受吧

优点:

  • 特征的提取不复杂(没有利用语义这些)但是看起来有效
  • 优化的迭代方式有效(损失函数的有效建立 + 迭代过程的细节处理)
  • 最后结果看起来不错

缺点:

  • 不太适用于低线数的机械雷达
  • 点云线特征的提取有点慢,相比于图像。
  • 对于环境的要求还是比较高的(相比于一些端对端的calib网络)
  • 和ros的结合有点鸡肋,项目内容似乎并不依赖ros的通信机制

Whatever,相比于一些利用枚举法求解最优值的项目,这个项目的方法还是不知道高明到哪里去了。

rough calibration

粗匹配中,会通过枚举的方式会得到很多角度的组合,对于每一个组合,会计算一个metric。然后,选择metric表现最好的欧拉角。

所以,对应的

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值