基于MultinomialNB多项式贝叶斯分类器实现中文文本情感分类任务

本文档介绍如何利用MultinomialNB多项式贝叶斯分类器处理中文文本情感分类任务,通过数据预处理、jieba分词、停用词处理、统计词频、模型训练和精度评估,实现购物评价的正面和负面情感判断。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

大家好,我是阿光。

本专栏整理了《PyTorch深度学习项目实战100例》,内包含了各种不同的深度学习项目,包含项目原理以及源码,每一个项目实例都附带有完整的代码+数据集。

正在更新中~ ✨

🚨 我的项目环境:

  • 平台:Windows10
  • 语言环境:python3.7
  • 编译器:PyCharm
  • PyTorch版本:1.8.1

💥 项目专栏:【PyTorch深度学习项目实战100例】


一、基于MultinomialNB多项式贝叶斯分类器实现中文文本情感分类任务

本项目是使用机器学习的经典算法MultinomialNB多项式贝叶斯模型进行文本情感分析,针对数据为购物评价信息,可以判断出语料所含情感的积极性,实现思路就是针对评价进行二分类,也就是简单的指出评价是正面的还是负面的。

在自然语言处理方面,对于预测其实有很多的算法。那么,贝叶斯函数就是其中一个最常见的方法。从贝叶斯函数又发展出了一个朴素贝叶斯分类器,而继而又发展出来了一个拉普拉修平滑参数。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海洋 之心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值