8.深度学习之卷积神经网络-1

本文介绍了卷积神经网络(CNN)的基础知识,包括其组成层、二维卷积层、填充和步幅的概念。CNN在图像分类任务中扮演重要角色,通过卷积层保留输入形状并有效地识别图像像素的相关性,避免参数过大。卷积运算在图像处理中能实现边缘检测等效果。此外,还探讨了填充和步幅如何影响CNN的计算过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

8.1 卷积神经网络

8.1.1 卷积神经网络的组成层

  • 卷积神经网络是一种用来处理局部和整体相关性的计算网络结构
  • 以图像分类任务为例,在卷积神经网络中,一般包含5种类型的网络层次结构:
  • [INPUT - CONV - RELU - POOL - FC]
    • 输入层
    • 卷积层
    • 激活函数
    • 池化层
    • 全连接层

8.1.2 图像分类的局限性

  • 图像进行分类有一定的局限性
    • 图像在同一列邻近的像素在这个向量中可能相距较远
    • 对于大尺寸的输入图像,使用全连接层容易造成模型过大
  • 卷积层尝
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值