代码随想录算法 Day21 | Ch6 二叉树(八 )● 669.修剪二叉搜索树 ● 108. 将有序数组转换成二叉搜索树 ●538. 把二叉搜索树转换为累加树

一、修剪二叉搜索树

        1.题目:给你二叉搜索树的根节点 root ,同时给定最小边界low 和最大边界 high。通过修剪二叉搜索树,使得所有节点的值在[low, high]中。修剪树 不应该 改变保留在树中的元素的相对结构 (即,如果没有被移除,原有的父代子代关系都应当保留)。 可以证明,存在 唯一的答案 。

所以结果应当返回修剪好的二叉搜索树的新的根节点。注意,根节点可能会根据给定的边界发生改变。

        2.思路:

        3.注意:

        4.代码:

// /**
//  * Definition for a binary tree node.
//  * struct TreeNode {
//  *     int val;
//  *     TreeNode *left;
//  *     TreeNode *right;
//  *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
//  *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
//  *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
//  * };
//  */
class Solution {
public:
    TreeNode* leftNode;
    TreeNode* rightNode;

    TreeNode* trimBST(TreeNode* root, int low, int high) {
        if(root == NULL)
            return NULL;

        if( root->val < low )
        {
            leftNode = trimBST(root->right, low, high);
            return leftNode;
        }

        if( root->val > high)
        {
            rightNode = trimBST(root->left, low, high);
            return rightNode;
        }

        root->left = trimBST(root->left, low, high);
        root->right = trimBST(root->right, low, high);

        return root;
    }
};

// class Solution {
// public:
//     TreeNode* trimBST(TreeNode* root, int low, int high) {
//         if (root == nullptr ) return nullptr;
//         if (root->val < low) {
//             TreeNode* right = trimBST(root->right, low, high); // 寻找符合区间[low, high]的节点
//             return right;
//         }
//         if (root->val > high) {
//             TreeNode* left = trimBST(root->left, low, high); // 寻找符合区间[low, high]的节点
//             return left;
//         }
//         root->left = trimBST(root->left, low, high); // root->left接入符合条件的左孩子
//         root->right = trimBST(root->right, low, high); // root->right接入符合条件的右孩子
//         return root;
//     }
// };

二、将有序数组转换成二叉搜索树

        1.题目:给你一个整数数组 nums ,其中元素已经按 升序 排列,请你将其转换为一棵 

平衡二叉搜索树。

        2.思路:

        3.注意:

        4.代码:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:

    TreeNode* traversal(vector<int>& nums, int leftIndex, int rightIndex)
    {
        if( leftIndex > rightIndex)
            return NULL;

        int cenIndex = leftIndex + (rightIndex - leftIndex)/2;
        TreeNode* root = new TreeNode(nums[cenIndex]);

        root->left = traversal(nums, leftIndex, cenIndex - 1);
        root->right = traversal(nums, cenIndex + 1, rightIndex);

        return root;
    }


    TreeNode* sortedArrayToBST(vector<int>& nums) {
        return traversal(nums, 0, nums.size()-1);
    }
};

三、把二叉搜索树转换为累加树

        1.题目:给出二叉 搜索 树的根节点,该树的节点值各不相同,请你将其转换为累加树(Greater Sum Tree),使每个节点 node 的新值等于原树中大于或等于 node.val 的值之和。

提醒一下,二叉搜索树满足下列约束条件:

  • 节点的左子树仅包含键 小于 节点键的节点。
  • 节点的右子树仅包含键 大于 节点键的节点。
  • 左右子树也必须是二叉搜索树。

        2.思路:反中序迭代:右→中→左

        3.注意:

        4.代码:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    int count;

    TreeNode* convertBST(TreeNode* root) {
        if(root == NULL)
            return NULL;

        convertBST(root->right);
        count += root->val;
        root->val = count;
        convertBST(root->left);

        return root;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值