全排列问题描述
全排列问题,也就是说对于一个包含有限个数元素的集合,对它进行一个全排列,通俗点讲就是把这个集合中所有元素进行排列的所有可能情况。
全排列问题的常规解题思路
这里我们能以一个例子来进行描述,如下
有这么一个集合 R = {r1,r2,r3,r4}
那么这个集合的全排列共有哪些情况呢?
首先,第一个位置放元素r1 剩下的就是元素{r2,r3,r4}的一个全排列 ;
R1 = {r2,r3,r4}的全排列 这里又把r2放在第一个位置,剩下元素R2 = {r3,r4},这时要求R2的全排列,将r3放到第一个位置,最后集合中只剩下R3 = {r4},只有一种可能了,得到一种结果,然后回到上一个集合R2 ,将r4放到第一个元素位置,剩下R3 = {r3},得到一种结果,这时R2已经没有元素了,回到R1,将r3放到第一个元素的位置,接下来的操作就和将r2放到第一个元素的位置是一样的了,然后就是r4,直到R1中遍历完所有元素为止,然后回到R,按照r1的规律处理r2,r3,r4。
递归代码实现
/**
list就是集合R
k 表示list中的开始位置
m 表示list中的结束位置
*/
void perm(char[] list,int