递归算法之全排列问题

本文介绍了全排列问题,详细阐述了解决这一问题的常规思路,并通过递归代码实现来演示如何进行全排列。算法的时间复杂度为O(n!),空间复杂度为O(n)。下期将分享递归在整数划分问题中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

全排列问题描述

全排列问题,也就是说对于一个包含有限个数元素的集合,对它进行一个全排列,通俗点讲就是把这个集合中所有元素进行排列的所有可能情况。

全排列问题的常规解题思路

这里我们能以一个例子来进行描述,如下
有这么一个集合 R = {r1,r2,r3,r4}
那么这个集合的全排列共有哪些情况呢?
首先,第一个位置放元素r1 剩下的就是元素{r2,r3,r4}的一个全排列 ;
R1 = {r2,r3,r4}的全排列 这里又把r2放在第一个位置,剩下元素R2 = {r3,r4},这时要求R2的全排列,将r3放到第一个位置,最后集合中只剩下R3 = {r4},只有一种可能了,得到一种结果,然后回到上一个集合R2 ,将r4放到第一个元素位置,剩下R3 = {r3},得到一种结果,这时R2已经没有元素了,回到R1,将r3放到第一个元素的位置,接下来的操作就和将r2放到第一个元素的位置是一样的了,然后就是r4,直到R1中遍历完所有元素为止,然后回到R,按照r1的规律处理r2,r3,r4。

递归代码实现

/**
list就是集合R
k 表示list中的开始位置
m 表示list中的结束位置
*/
void perm(char[] list,int
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值