前言
一、限流操作:
为什么限流一键获取最先java文档。
是防止用户恶意刷新接口,因为部署在外部服务器,并且我们采用websocket的接口实现的,公司没有对硬件升级,导致程序时长崩溃,为了解决这个问题,请教公司的大佬,提出一个方案,限流操作。
但是最后找到原因所在,解决了,吞吐量1万6左右,用的测试服务器,进行测试的,我开发的笔记本进行压测,工具是Jmeter,结果我的电脑未响应,卡了,服务器还没有挂。
限流那些方法
常见的限流:
-
Netflix的hystrix
-
阿里系开源的sentinel
-
说白了限流,为了处理高并发接口那些方式:队列,线程,线程池,消息队列、 kafka、中间件、sentinel:直接拒绝、Warm Up、匀速排队等
技术层面:
- 判断是否有相同的请求,可以通过自身缓存挡住相同请求
- 用负载均衡,比如nginx
- 用缓存数据库,把热点数据get到缓存中,redis,ES
- 善于使用连接池。面试题整理好了,关注公众号后端面试那些事,回复:2022面经,即可获取
业务层面:
- 加入交互,排队等待
二、应用级别限流与限流实现:
方法一、使用google的guava,令牌桶算法实现:平滑突发限流 ( SmoothBursty) 、平滑预热限流 ( SmoothWarmingUp) 实现
<!--Java项目广泛依赖 的核心库-->
<dependency>
<groupId>com.google.guava</groupId>
<artifactId>guava</artifactId>
<version>23.0</version>
</dependency>
package com.citydo.dialogue.controller;
import com.google.common.util.concurrent.RateLimiter;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RestController;
import java.util.Collections;
@RestController
public class HomeController {
// 这里的1表示每秒允许处理的量为10个
private RateLimiter limiter = RateLimiter.create(10.0);
//RateLimiter.create(doublepermitsPerSecond, long warmupPeriod, TimeUnit unit);
//RateLimiter limiter = RateLimiter.create(5, 1000, TimeUnit.MILLISECONDS);
//permitsPerSecond: 表示 每秒新增 的令牌数
// warmupPeriod: 表示在从 冷启动速率 过渡到 平均速率 的时间间隔
@GetMapping("/test/{name}")
public String Test(@PathVariable("name") String name){
// 请求RateLimiter, 超过permits会被阻塞
final double acquire = limiter.acquire();
System.out.println("--------"+acquire);
//判断double是否为空或者为0
if(acquire>=(-1e-6)&&acquire<=(1e-6)){
return name;
}else{
return "操作太频繁";
}
}
}
这个有点类似与QPS流量控制:
- 当 QPS 超过某个阈值的时候,则采取措施进行流量控制。
直接拒绝:
- 方式是默认的流量控制方式,当QPS超过任意规则的阈值后,新的请求就会被立即拒绝,拒绝方式为抛出Exception或者返回值404。这种方式适用于对系统处理能力确切已知的情况下,比如通过压测确定了系统的准确水位时。
方法二、请求一次redis增加1,key可以是IP+时间或者一个标识+时间,没有就创建,需要设置过期时间
设置拦截器:
package com.citydo.dialogue.config;
import com.citydo.dialogue.service.AccessLimitInterceptor;
import org.springframework.context.annotation