一、常见自然语言处理任务
类别 | 简介 |
---|---|
情感分析 | 对给定的文本分析其情感极性文本生成:根据给定的文本进行生成 |
命名实体识别 | 标记句子中的实体 |
阅读理解 | 给定上下文与问题,从上下文中抽取答案 |
掩码填充 | 填充给定文本中的掩码词 |
文本摘要 | 生成一段长文本的摘要 |
机器翻译 | 将文本翻译成另一种语言 |
特征提取 | 生成给定文本的张量表示 |
对话机器人 | 根据用户输入文本,产生回应,与用户对话 |
二、自然语言处理的几个阶段
-
第一阶段:统计模型+数据(特征工程)
决策树、SVM、HMM、CRF、TF-IDF、BOW
-
第二阶段:神经网络+数据
Linear、CNN、RNN、GRU、LSTM、Transformer、Word2vec、Glove
-
第三阶段:神经网络+预训练模型+(少量)数据
GPT、BERT、ROBERTa, ALBERT、BART、T5
-
第四阶段:神经网络+更大的预训练模型+Prompt
ChatGPT、Bloom、LLaMA、Alpaca、Vicuna、MOSS、文心一言、通义千问、星火
三、Transformers及相关库
-
Transformers:
核心库,模型加载、模型训练、流水线等
-
Tokenizer:
分词器,对数据进行预处理,文本到token序列的互相转换。
-
Datasets:
数据集库,提供了数据集的加载、处理等方法
-
Evaluate:
评估函数,提供各种评价指标的计算函数
-
PEFT:
高效微调模型的库,提供了几种高效微调的方法,小参数量动大模型
-
Accelerate:
分布式训练,提供了分布式训练解决方案,包括大模型的加载与推理解决方案Optimum:优化加速库,支持多种后端,如Onnxruntime、OpenVino等
-
Gradio:
可视化部署库,几行代码快速实现基于Web交互的算法演示系统
四、Ubuntu Transformers环境安装
- **对于cuda等的版本****选择,依据此流程进行:显卡型号 -> 算力 -> CUDA -> 驱动 -> cuDNN,
- miniconda 安装下载地址:
https://mirrorstuna.tsinghua.edu.cn/anaconda/miniconda/
如果C盘有空间,最好安装在C盘,且安装目录中不能有中文。安装时勾选"将其添加到PATH"
- conda环境创建:
conda create -n transformers python=3.9
注意:明确指定版本,否则可能会因版本过高导致有包装不上
- pypi配置国内源-清华源,配置后下载速度起飞:
https://mirrors.tuna.tsinghua.edu.cn/help/pypi/
- 配置pypi指令:如果您到 pip 默认源的网络连接较差,临时使用本镜像站来升级 pip:
python -m pip install -i https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple --upgrade pip
- 配置pypi指令:升级 pip 到最新的版本后进行配置:
python -m pip install --upgrade pip
pip config set global.index-url https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple
pytorch安装:
-
官方地址:https://pytorch.org/
-
在一个单独的环境中,能使用pip就尽量使用pip,实在有问题的情况,例如没有合适的编译好的系统版本的安装包,再使用conda进行安装,不要来回混淆;
-
30XX、40XX显卡,要安装cu11以上的版本,否则无法运行;
-
CUDA是否要安装:如果只需要训练、简单推理,则无需单独安装CUDA,直接安装pytorch;如果有部署需求,例如导出TensorRT模型,则需要进行CUDA安装。
-
Transformers核心包安装命令:
pip install transformers datasets evaluate peft accelerate gradio optimum sentencepiece
pip install jupyterlab scikit-learn pandas matplotlib tensorboard nltk rouge
五、Demo测试:
#样例:阅读理解
#导入gradio
import gradio as gr
#导入transformers相关包
from transformers import #通过Interface加载pipeline并启动阅读理解服务
gr.Interface.from pipeline(pipeline("question-answering", model="uer/roberta-base-chinese-extractive
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。