今天的工作流是个进阶版,一共用到了12个节点,如下图:
我们直接进入教程的部分——工作流拆解:
1、开始:
需要用户先输入主题,变量名起个自己好理解的名字比如叫“video_theme”(视频主题)。
2、大模型:
选用Deepseek R1模型,再输入“系统提示词”和“用户提示词”,输出参数不用管,默认即可。
(提示词根据自己的需求来写,一般包括角色设定、任务需求、限制条件三个模块,需要我这版提示词的+v发~)
提示词是否合格,点击试运行看看效果就可以了,我大概改了5版,得到下面的输出结果,还不错。
(输入主题:美白是在净化身体?)
3、文本处理:
这一步是为了给大模型输出的结果进行分割断句,这样在视频里呈现的是一句话一句话的效果,而不是大段的文字。参数也很简单,输入大模型的output即可。
4、图像生成:
根据自己的需要选择模型和比例,要输入的是最开始填写的视频主题,然后填写正向和反向提示词,跟正常AI绘画写提示词一样。(想画什么风格都可以,案例视频中用的是黑白简笔画+LOGO设计模型)
可以试运行一下,看看提示词的效果,修改到满意为止:
5、抠图节点:
这一步是为了把上面生成的图片抠出来,方便后面画板排版。输入参数是图像生成里面的图片data数据。
6、接下来到了稍微复杂一点的步骤,批处理:
批处理通常分为外部和内部两条并行线。
外部线输入文本处理之后的output结果,输出结果等内部线设置完之后,选择最后输出的视频链接。
注意,并行数量不要超过3,否则会报错(更多运行数量要充值)
批处理内部节点有四个,分别是选择器、画板、音频生成、视频生成。
6.1、选择器:
为什么要加这么一个节点,避免因为前面输出结果为空,导致后面的流程出现bug,白白浪费token和时间。这一步只要定义批处理的输入值不为空,则继续下面的流程,如果为空,则直接结束。
6.2、画板:
看过上一篇文章的,对这个节点就不陌生了,相当于给画面进行排版,设置文字和图片的位置、字体大小等等。这通常是考验审美的核心环节,直接影响到最后的版面效果,可以好好的捣鼓一番。
这里要注意,文本的格式要设置成水平居中+区块文本,否则输出的标题和唱词位置不是居中的,很混乱。
6.3、音频生成:
参数也很简单,输入批处理的input,也就是被断过句的文案,然后在voice_id里面选择合适的声音。
试运行结果,配音是一句一句的,一句一个链接:
1、榴莲是药还是毒?
https://lf26-appstore-sign.oceancloudapi.com/ocean-cloud-tos/VolcanoUserVoice/speech_7426720361733144585_5874976d-2f1e-4087-9ce5-76c21d5d9853.mp3?lk3s=da27ec82&x-expires=1744096630&x-signature=m7mU694PRAhSgPwmUtpS%2BAq5fos%3D
2、体虚者的蜜糖。
https://lf3-appstore-sign.oceancloudapi.com/ocean-cloud-tos/VolcanoUserVoice/speech_7426720361733144585_84455ba9-fa01-4432-880f-96f6fd44bc53.mp3?lk3s=da27ec82&x-expires=1744096629&x-signature=TjyZQIxLi7jCYF0Zhs1XJnKeBSc%3D
6.4、视频生成(收费):
这一步是将前面一张张的图片和一句句的文案和配音对应结合起来,生成视频。所以需要输入图中这两个参数。
(这个输出里面的videoUrl就是要批处理外线节点的输出结果)
试运行结果,一个画面+一句文案+一句配音合成一个视频:
https://agent.mathmind.cn/minimalist/api/video/files/0408-0-ca4d6de6-7366-4868-989d-ad1b8424101c.mp4
(免费额度用完了,正确格式的视频暂不放案例了,按照前面的参数调整即可)
7、视频合成(收费):
将前面生成的一句句的短视频合成一个完整的视频。需要输入的是批处理的output。
8、最后,结束节点,输出合成之后的视频链接Url。
一个完整的视频工作流就完成了。
由于视频生成和视频合成所需的token都是收费的,每天的赠送额度有限500资源值,试运行的时候要控制一下次数,避免最后额度不够需要充值~
整个工作流是跑通了的,但是token不足的情况下,最后输出的是null(空),充值即可。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。