问题: 给你m万元和n个投资项目,每个项目投资不同的钱会有不同的回报。
解析: 因为每个项目投资不同的钱会有不同的收益,所以我们可以将每个项目投资不同的钱看成不同的个体(因为每个项目投资不同的钱和回报之间没有联系),同时同一项目同一付出投资都是一份的,所以我们可以将拆分后的问题转化为0/1背包问题,即有m万元和n*m个项目,告诉你每个分解后项目的付出和回报。
设计:
for(0 -> n*m)
for(m - > cost[i])
dp[j] = max(dp[j], dp[j - cost[i]] + val[i];
Return dp[m];
分析:
O(n*m^2)
代码:
#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e2 + 10;
const int Max = 1e4 + 10;
inline int rd(){
int x;
scanf("%d", &x);
return x;
}
int n, m, cnt;// m万元,n个项目
int cost[maxn], val[maxn], dp[maxn] = {0};
int solve(){
for(int i = 0; i < cnt; i++){
for(int j = m; j >= cost[i]; j--){
dp[j] = max(dp[j], dp[j - cost[i]] + val[i]);
}
}
return dp[m];
}
int main(){
m = rd();
n = rd();
cnt = 0;
//对每个项目进行分解,将每一个项目转化为多个项目,问题就变成了0/1背包
for(int i = 0; i <= m; i++){
int give = rd();//付出
for(int j = 1; j <= n; j++){
cost[cnt] = give;
val[cnt++] = rd();//价值
}
}
printf("%d\n", solve());
system("pause");
return 0;
}
/*
5 4
0 0 0 0 0
1 11 0 2 20
2 12 5 10 21
3 13 10 30 22
4 14 15 32 23
5 15 20 40 24
*/
/*
61
*/
github地址: 传送门